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Abstract Based on the spatial distribution of precipitation in
China, this study gives a modification of High Accuracy
Surface Modeling (HASM) method for improving interpola-
tion of precipitation. To assess the feasibility of this modified
model, namely, HASM-PRE, we use precipitation data mea-
sured at 712 stations for the period 1951–2010, using 605
stations for function development and reserving 107 for val-
idation tests. The performance of HASM-PRE is compared
with those of HASM and other classical methods: kriging,
inverse distance weighted (IDW) method and spline. Results
show that HASM-PRE has less root mean square error
(RMSE) and mean absolute error (MAE) than the other tech-
niques tested in this study. The precipitation map obtained
from HASM-PRE is better than that obtained using other
methods. Therefore, HASM-PRE can be seen as an alternative
to the popular interpolation techniques, particularly if we
focus on simulation accuracy. In addition, the effective way
to combine the strengths of both human expert and differential
geometry in this study can be applied for calculating precip-
itation for other areas in other temporal scales. For better
improvement, HASM-PRE can be combined with ancillary
variables and implemented in parallel environments.

1 Introduction

Spatially distributed estimations of precipitation are required as
inputs to many environmental models (Xu and Singh 1998;
Vieux 2001; Smith et al. 2001; Hasenauer et al. 2003; Sato et al.
2004; Robertson et al. 2007; Tong and Naramngam 2007;
Rowhani et al. 2011). However, in most cases, the networks
of the precipitation measuring stations are sparse and the

available data are insufficient to characterize the highly variable
precipitation and its spatial distribution. Therefore, it is neces-
sary to find methods to estimate precipitation in areas where
precipitation has not been measured. Interpolation is a way of
reconstructing continuous fields from variables measured at
point locations. Many interpolation techniques are used to
interpolate climate variables (Daly et al. 1994, 2001, 2002;
Goovaerts 2000; Yan et al. 2005; Ninyerola et al. 2007;
Teegavarapu 2007; DeGaetano and Wilks 2009; Portales
et al. 2010). However, there is no optimum method to define
the surface of mean precipitation especially in an area of
complex climatology. The optimal interpolation method should
be obtained by analyzing the data and the spatial structure
(MacEachren and Davidson 1987; Burrough and McDonnell
1998; Brus and Heuvelink 2007; Aalto et al. 2012).

In order to solve the error problem that had long troubled
the interpolation method, Yue (2011) developed a novel sur-
face modeling method, High Accuracy Surface Modeling
(HASM), based on the fundamental theorem of surface theory.
Numerical tests have shown that HASM is much more accu-
rate than the classical methods such as kriging, inverse dis-
tance weighted (IDW) method, and spline (Yue and Du 2006;
Yue et al. 2007). Surface modeling of digital elevation model
(DEM) and ecosystem change also indicate that HASM has
increased interpolation accuracy (Yue 2011; Yue et al. 2011).
Despite the good performance of HASM from numerical tests
and interpolation of some real-world applications, its perfor-
mance in interpolating precipitation has not been satisfactory.

To improve HASM’s simulation skills in interpolating
precipitation in China, this research gives a modification of
HASM based on the spatial distribution of precipitation in
China. We denote the new version of HASM as HASM-PRE,
and apply it to simulate mean annual precipitation of China
during 1951 to 2010 since long-term climate datasets are
often required in many biotic and abiotic processes (Fronzek
et al. 2006; Kullmann 2010). The simulation accuracy of
HASM-PRE is compared with that of its earlier version
(HASM), and the other frequently used interpolators: kriging,
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IDW and spline, which have been the most widely used
methods in climate research (Hevesi et al. 1992; Phillips et al.
1992; Hutchinson 1995; Thornton et al. 1997; Dingman et al.
1998; Hijmans et al. 2006; Samanta et al. 2012).

2 Data and study area

2.1 Data used

Long-term climate observation data are obtained from the
national meteorological network in China for the period
1951–2010. China area has a low measurement network den-
sity formed of over 750 rain gauges in an areas of approxi-
mately 960,000 km2. The sampling periods of these meteo-
rology stations are not synchronous. Only 712 stations with
more than 35 complete years are selected with the exception
of 30 locations with between 25 and 35 complete years, which
are located in the west of China. Climate site density is higher
in eastern China than in western China, and these stations are
distributed unevenly (Fig. 1).

2.2 Study area and environmental conditions

The studied area, China (3°51′N–53°33′N, 73°33′E–135°05′
E), lies in the southeastern part of the Eurasian Continent, the

greatest continent in the world, and lies to the west of the
Pacific, the world’s largest ocean. China’s topography varies
greatly from high mountainous regions to inhospitable desert
zones and flat, fertile plains. It can be compared to a staircase
descending from west to east. In China, climatic control
through land and water must be strongly considered, due to
the vast continental extent of China itself, on the one hand,
and due to the huge extent of both continental and maritime
surroundings, on the other. The Indian Ocean may only
marginally affect the climate of China, since the Himalayas
represents a significant barrier to the influences from the
Indian Ocean. Therefore, continental and oceanic effects on
the climate of China may vary gradually, from strong oceanic
influences over the sea and coastal areas to strong continental
influences in the most inland and remote areas in the north-
west of China. Abundant atmospheric water vapor mainly
comes from the oceans. The monsoon system, together with
the effects of topography, yields a remarkable change in
annual total precipitation, from less than 25 mm in the
northwest to more than 2,000 mm in the southeast, thus
representing an increasing precipitation pattern from north-
west to southeast over China (Domroes and Peng 1988).
From the geostatistics viewpoint, this can be seen as the
spatial autocorrelation, which is a very common feature for
geographical variables and datasets, and means that obser-
vations close to each other are more likely to be similar.

Fig. 1 Spatial distribution of
the meteorological network in
China
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3 Methods

3.1 HASM

As an innovative method, HASM is based on the fundamental
theorem of surfaces whichmakes sure that a surface is unique-
ly defined by the first and the second fundamental coefficients
of it (Henderson 1998). In this section, the fundamental intu-
ition of HASM and its processes are given briefly.

Suppose a surface is a graph of a function z = f(x, y);
the first fundamental coefficients indicate how the sur-
face inherits the natural inner product of R3, in which
R3is the set of triples (x, y, z)of real numbers (Carmo
2006). The coefficients of the first fundamental form of
a surface yield information about some geometric prop-
erties, which are called intrinsic geometric properties
including angles of tangent vectors, the lengths of
curves, the areas of regions, and so on. The second
fundamental coefficients reflect the local warping of
the surface, namely, its deviation from the tangent plane

at the point under consideration (Liseikin 2004;
Toponogov 2006). In terms of the theorem of surfaces,
the first and second fundamental coefficients must sat-
isfy the Gauss equations for uniquely defining a surface
(Somasundaram 2005). The main task of HASM is to
solve these Gauss equations.

The basic equations of HASM can be formulated as (Yue
et al. 2007),

f xx ¼ Γ 1
11 f x þ Γ 2

11 f y þ
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E þ G−1
p

f yy ¼ Γ 1
22 f x þ Γ 2

22 f y þ
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E þ G−1
p

8>><>>: ; ð1Þ

where, f x , f y , fxx , fyy represent the first and second de-
rivatives of the function f(x, y) in the x and y directions,
respectively. These derivatives will be replaced with
finite difference approximations on a discretized domain
by using Taylor expansions to change the differential
equations into finite difference equations (Yue 2011).

E ¼ 1 þ f 2x ; F ¼ f x ⋅ f y ; G ¼ 1 þ f 2y ; L ¼ f xxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2x þ f 2y

q ; N ¼ f yyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2x þ f 2y

q ;

Γ 1
11 ¼ 1

2
GEx−2FFx þ FEy

� �
EG−F2
� �−1

; Γ 2
11 ¼ 1

2
2EFx−EEy−FEx

� �
EG−F2
� �−1

;

Γ 1
22 ¼

1

2
2GFy−GGx−FGy

� �
EG−F2
� �−1

;Γ 2
22 ¼

1

2
EGy−2FFy þ FGx

� �
EG−F2
� �−1

;

E, F, G are the first fundamental coefficients of the surface
and represent its local details, while L, M, N are the second
fundamental coefficients of the surface and denote the
macroscopical information such as the shape. The Christoffel
symbols Γ11

1,Γ11
2,Γ22

1,Γ22
2 depend only on the first funda-

mental coefficients and their derivatives (Somasundaram 2005).

Let {(xi, yj)|0 ≤ i ≤ I + 1, 0 ≤ j ≤ J + 1} be the computational
grids and h be the grid size in x and y directions. Finite
difference methods are used for solving equation set 1. The
discrete forms of fx, fxx and fyy are as follows,

f xð Þ i; jð Þ ≈

f 1; j− f 0; j
h

i ¼ 0

f iþ1; j− f i−1; j
2h

i ¼ 1;…; I ;

f Iþ1; j− f I ; j
h

i ¼ I þ 1

8>>>>><>>>>>:
f xxð Þ i; jð Þ ≈

f 0; j−2 f 1; j þ f 2; j
h2

i ¼ 0

f i−1; j−2 f i; j þ f iþ1; j

h2
i ¼ 1;…; I

f Iþ1; j−2 f I ; j þ f I−1; j
h2

i ¼ I þ 1

8>>>>>><>>>>>>:

f y
� �

i; jð Þ
≈

f i;1− f i;0
h

j ¼ 0

f i; jþ1− f i; j−1
2h

j ¼ 1;…; J ;

f i; Jþ1− f i; J
h

j ¼ J þ 1

8>>>>><>>>>>:
f yy

� �
i; jð Þ
≈

f i;0−2 f i;1 þ f i;2
h2

j ¼ 0

f i; j−1−2 f i; j þ f i; jþ1

h2
j ¼ 1;…; J

f i; Jþ1−2 f i; J þ f i; J−1
h2

j ¼ J þ 1

8>>>>><>>>>>:
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Correspondingly, Eq. 1 can be approximated by

f nþ1
iþ1; j−2 f

nþ1
i; j þ f nþ1

i−1; j

h2
¼ Γ 1

11

� �n
i; j

f niþ1; j− f
n
i−1; j

2h
þ Γ 2

11

� �n
i; j

f ni; jþ1− f
n
i; j−1

2h
þ Lni; jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

En
i; j þ Gn

i; j−1
q

f nþ1
i; jþ1−2 f

nþ1
i; j þ f nþ1

i; j−1

h2
¼ Γ 1

22

� �n
i; j

f niþ1; j− f
n
i−1; j

2h
þ Γ 2

22

� �n
i; j

f ni; jþ1− f
n
i; j−1

2h
þ Nn

i; jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En
i; j þ Gn

i; j−1
q

8>>>>><>>>>>:
ð2Þ

where n represents the number of iterations,

En
i; j ¼ 1þ f niþ1; j− f

n
i−1; j

2h

� �2

; Fn
i; j ¼

f niþ1; j− f
n
i−1; j

2h

� �
f ni; jþ1− f

n
i; j−1

2h

� �
;Gn

i; j ¼ 1þ f ni; jþ1− f
n
i; j−1

2h

� �2

;

Lni; j ¼
f ni−1; j−2 f

n
i; j þ f niþ1; j

h2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f niþ1; j− f

n
i−1; j

2h

� �2
þ f ni; jþ1− f

n
i; j−1

2h

� �2
r ; Nn

i; j ¼
f ni; j−1−2 f

n
i; j þ f ni; jþ1

h2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f niþ1; j− f

n
i−1; j

2h

� �2
þ f ni; jþ1− f

n
i; j−1

2h

� �2
r ;

Γ 1
11

� �n
i; j ¼

Gn
i; j En

iþ1; j−E
n
i−1; j

� �
−2Fn

i; j Fn
iþ1; j−F

n
i−1; j

� �
þ Fn

i; j En
i; jþ1−E

n
i; j−1

� �
4 En

i; jG
n
i; j− Fn

i; j

� �2
� �

h
;

Γ 2
11

� �n
i; j ¼

2En
i; j Fn

iþ1; j−F
n
i−1; j

� �
−En

i; j En
i; jþ1−E

n
i; j−1

� �
−Fn

i; j En
i; jþ1−E

n
i; j−1

� �
4 En

i; jG
n
i; j− Fn

i; j

� �2
� �

h
;

Γ 1
22

� �n
i; j ¼

2Gn
i; j Fn

i; jþ1−F
n
i; j−1

� �
−Gn

i; j Gn
iþ1; j−G

n
i−1; j

� �
−Fn

i; j Gn
i; jþ1−G

n
i; j−1

� �
4 En

i; jG
n
i; j− Fn

i; j

� �2
� �

h
;

Γ 2
22

� �n
i; j ¼

En
i; j Gn

i; jþ1−G
n
i; j−1

� �
−2Fn

i; j Fn
i; jþ1−F

n
i; j−1

� �
þ Fn

i; j Gn
iþ1; j−G

n
i−1; j

� �
4 En

i; jG
n
i; j− Fn

i; j

� �2
� �

h
:

The matrix formulation of Eq. 2 can be expressed as

A xnþ1 ¼ dn

Bxnþ1 ¼ qn

	
ð3Þ

where xn+1=( f 1,1
n+1,…, f 1,J

n+1, f 2,1
n+1,…, f 2, J

n+1,…,, f I−1,1
n+1 ,…,

f I−1,J
n+1 , f I,1

n+1,…, f I,J
n+1)T.

A ¼

−2I I
I −2I I

⋱ ⋱ ⋱
I −2I I

I −2I

266664
377775
I ⋅ J�I ⋅ J

; I ¼
1

⋱
1

24 35
J� J

;

B ¼
bB

⋱ bB
24 35

I ⋅ J�I ⋅ J

; bB ¼

−2 1
1 −2 1

⋱ ⋱ ⋱
1 −2 1

⋱ ⋱ ⋱
1 −2 1

1 −2

2666666664

3777777775
J� J

;

A and B denote the coefficient matrices of Eq. 3 and d, q
are the right-hand vectors, respectively. The boundary values
of HASM are obtained using other interpolators, such as
kriging, and are not yet changed during iterations.

The following equality-constrained least squares problem
is developed to make the interpolated values equal to or
approximate to the sampled values at the sampling points,

min
A
B


 �
xnþ1− d

q


 �n���� ����
2

Sxnþ1 ¼ k

8<: ð4Þ

where S(l, (i−1)⋅J+j)=1, k lð Þ ¼ f i; j, this means that the

value of the lth sampling point (xi,yj) is f i; j. However, when

the sampling point deviates from the grid point, we should
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find out the nearest grid point for which Taylor expansion is
used to give an approximate value of this point.

An interesting way to obtain an approximate solution to
Eq. 4 is to solve the unconstrained least squares problem,

min
x

A
B
λS

24 35xnþ1−
d
q
λk

24 35n������
������
2

ð5Þ

for large λ (Golub and Van Loan 2009). This problem is
equivalent to the symmetric positive definite linear system,

Wxnþ1 ¼ vn ð6Þ

where W=ATA+BTB+λSTS reflects the local relationship of
the surrounding points since W is a sparse matrix of which
the nonzero elements in each row denote the coefficients of
the relationship between each point and the surrounding
points. vn=ATdn+BTqn+λ2STkn is the right-hand vector; λ
is the weight of the sampling points. For large values of λ,
however, numerical problems arise (Golub and Van Loan
2009). Therefore, for a specific application, we must adjust
this parameter until a reasonable agreement is attained be-
tween model output and field measurement. x is a vector that
each element denotes the simulated value of the correspond-
ing grid point.

3.2 A modified version of HASM

Since mathematical methods cannot explain all the variabil-
ity due to the climate anomalies, it seems that the optimal
situation to produce accurate precipitation surface is to begin
with an objective method that could be revised by experts. A
recent review about the combination of expert knowledge
and mathematical tools applied to climate mapping can be
found in the report of Daly et al. (2002). However, the
method is based on a linear regression function between
climate and elevation, which is difficult to satisfy in practical
applications especially in China. Brus and Heuvelink (2007)
stated that, besides the data type, area of interest and com-
putation capacity, the quality of the spatial prediction was
also subject to the spatial patterns of the observations. In this
section, we modify HASM by taking into account the phe-
nomenon of the spatial distribution of precipitation.

Note that although HASM is based on the fundamental
theorem of surface, the theoretical basis of it is not complete,

without considering the mixed derivatives f xy ¼ Γ1
12 f x þ Γ2

12

f y þ Mffiffiffiffiffiffiffiffiffiffiffi
EþG−1

p of the equations of surface theory (Yue 2011).

Since fxy reflects the local warping of the surface, namely, its
deviation from tangent plane at the point under consideration
(Liseikin 2004), we then add this equation into HASM tomake it

theoretically perfect. In addition, we propose a specific discrete
scheme of fxy according to the spatial distribution pattern of
precipitation in China.

Consider the following partial differential equations of the
surface theory, namely, Gauss equations (Somasundaram 2005),

f xx ¼ Γ 1
11 f x þ Γ 2

11 f y þ
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E þ G−1
p

f yy ¼ Γ 1
22 f x þ Γ 2

22 f y þ
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E þ G−1
p

f xy ¼ Γ 1
12 f x þ Γ 2

12 f y þ
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E þ G−1
p

8>>>>>><>>>>>>:
; ð7Þ

where the first two equations are the main predictive equations
of HASM. In the third equation,

M ¼ f xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2x þ f 2y

q ;Γ 1
12 ¼

1

2
GEy−FGx

� �
EG−F2
� �−1

;

Γ 2
12 ¼

1

2
EGx−FEy

� �
EG−F2
� �−1

:

The discrete forms of fx, fy, fxx and fyy are the same as in
HASM. Since the precipitation shows a strong southeast–
northwest trend, we can use the neighboring observations
located in the southeast and northwest to predict attributed
values at unsampled locations (i, j). Therefore, by employing
Taylor expansion, fi+1,j−1, fi+1,j, fi,j−1 located in the northwest
and fi−1,j+1, fi,j+1, fi−1,j from the southeast can be formulated
as the following Taylor expansions in series

f iþ1; j−1 ¼ f i; j þ hf x−hf y þ
h2

2
f xx þ

h2

2
f yy−h

2 f xy

þ O h2
� �

; ð8Þ

f iþ1; j ¼ f i; j þ hf x þ
h2

2
f xx þ O h2

� �
; ð9Þ

f i; j−1 ¼ f i; j−hf y þ
h2

2
f yy þ O h2

� �
; ð10Þ

f i−1; jþ1 ¼ f i; j−hf x þ hf y þ
h2

2
f xx þ

h2

2
f yy−h

2 f xy

þ O h2
� �

; ð11Þ

f i; jþ1 ¼ f i; j þ hf y þ
h2

2
f yy þ O h2

� �
; ð12Þ
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f i−1; j ¼ f i; j−hf x þ
h2

2
f xx þ O h2

� �̇
: ð13Þ

Hence, for the inner points of the computational grid,
we have

f xy≈
1

2h2
f iþ1; j þ f i; j−1 þ f i; jþ1 þ f i−1; j− f iþ1; j−1− f i−1; jþ1−2 f i; j

� �
:

The formulation of the boundary point can be obtained in
the same way. Then, the discrete forms of fxy are
as follows:

f xy
� �

i; jð Þ≈

f 1;1− f 1;0− f 0;1 þ f 0;0
h2

i ¼ 0; j ¼ 0

f 1; Jþ1− f 1; J− f 0; Jþ1 þ f 0; J
h2

i ¼ 0; j ¼ J þ 1

f 1; jþ1− f 0; jþ1− f 1; j−1 þ f 0; j−1
2h2

i ¼ 0; j ¼ 1;⋯; J

f Iþ1;1− f I ;0− f I ;1 þ f Iþ1;0

h2
i ¼ I þ 1; j ¼ 0

f I ; J− f Iþ1; J− f I ; Jþ1 þ f Iþ1; Jþ1

h2
i ¼ I þ 1; j ¼ J þ 1

f Iþ1; jþ1− f I ; jþ1− f Iþ1; j−1 þ f I ; j−1
2h2

i ¼ I þ 1; j ¼ 1;…; J

f iþ1;1− f iþ1;0− f i−1;1 þ f i−1;0
2h2

i ¼ 1;…; I ; j ¼ 0

f iþ1; Jþ1− f iþ1; J− f i−1; Jþ1 þ f i−1; J
2h2

i ¼ 1;…; I ; j ¼ J þ 1

f iþ1; j− f iþ1; j−1− f i−1; jþ1−2 f i; j þ f i; j−1 þ f i; jþ1 þ f i−1; j
2h2

i ¼ 1;…; I ; j ¼ 1;…; J̇ :

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
For the inner points, the distribution of the surrounding

points used to represent spatial correlation is shown in Fig. 2.
Therefore, the equations of HASM-PRE are

as follows:

f nþ1
iþ1; j−2 f

nþ1
i; j þ f nþ1

i−1; j

h2
¼ Γ 1

11

� �n
i; j

f niþ1; j− f
n
i−1; j

2h
þ Γ 2

11

� �n
i; j

f ni; jþ1− f
n
i; j−1

2h
þ Lni; jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

En
i; j þ Gn

i; j−1
q

f nþ1
i; jþ1−2 f

nþ1
i; j þ f nþ1

i; j�1

h2
¼ Γ 1

22

� �n
i; j

f niþ1; j− f
n
i−1; j

2h
þ Γ 2

22

� �n
i; j

f ni; jþ1− f
n
i; j−1

2h
þ Nn

i; jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En
i; j þ Gn

i; j−1
q

f nþ1
iþ1; j− f

nþ1
iþ1; j−1− f

nþ1
i−1; jþ1−2 f

nþ1
i; j þ f nþ1

i; j−1 þ f nþ1
i; jþ1 þ f nþ1

i−1; j

2h2
¼ Γ 1

12

� �n
i; j

f niþ1; j− f
n
i−1; j

2h
þ Γ 2

12

� �n
i; j

f ni; jþ1− f
n
i; j−1

2h
þ Mn

i; jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En
i; j þ Gn

i; j−1
q

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð14Þ

where

Mn
i; j ¼

f niþ1; j− f
n
iþ1; j−1− f

n
i−1; jþ1−2 f

n
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Like the form of HASM, the constraint equation about
sample point information is added to Eq. 14, and the formu-
lation of HASM-PRE can be expressed as Fig. 2 Stencil for differentiation of the mixed derivative fxy
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A, B, C are the left-hand sides of Eq. 14, respectively.
For the inner grid points, A and B are identical to those
in HASM.

By introducing a Lagrange parameter λ, we finally get the
matrix equation of HASM-PRE,

Axnþ1 ¼ b
n

ð16Þ

Table 1 Means and standard deviations of RMSEs and MAEs of 20 validation sets for HASM-PRE, HASM, kriging, IDW and spline

Methods HASM-PRE HASM Kriging IDW Spline

RMSE (mm) 91.04 132.84 131.33 145.76 135.44

RMSESTD (mm) 18.31 24.74 23.37 25.08 33.83

MAE (mm) 52.87 91.06 77.51 88.22 81.33

MAESTD (mm) 12.76 14.16 13.05 16.83 17.00
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where

A ¼ ATAþ BTBþ CTC þ λ2STS and b ¼ ATd þ BTqþ CTpþ λ2STk̇:

4 Results and analyses

4.1 Comparison of interpolation performance

A total of 107 stations were selected at random from the data
set and withheld from the interpolation calculations. This
process was repeated 20 times. Two indices, root mean
square error (RMSE) and mean absolute error (MAE), were
calculated from the station value and interpolated value at
each validation sample site. The formulations of RMSE and
MAE are:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
k¼1;…;N

f k− f k
� �2

s
; MAE ¼ 1

N

X
k¼1;…;N

f k− f k
 

where fk is the true value at the kth point (xi, yj); f k is the
simulated value; N is the number of validation points. The
values of these criteria should be close to zero if the method
is accurate. In comparison, RMSE is sensitive to the size of
outliers and is used as an indicator of the magnitude of
extreme errors. Lower RMSE indicates greater central ten-
dency and generally smaller extreme error (Vicente-Serrano
et al. 2003).

We compared the performance of HASM-PRE, HASM and
those of ordinary kriging (OK), IDW, and spline methods.
These classical methods were performed using the module of
3D analyst ArcGIS 10.1. Different parameters for OK, IDW
and spline were compared, and the best parameters for each
technique with the smallest RMSE values were decided. For
OK, the exponential, spherical, Gaussian and linear models
were fitted to the experimental variogram and the number of
the closest samples chosen varied from 5 to 30. IDW was
estimated with powers of 1, 2, 3 and 4. For spline, the regu-
larized and tension methods were implemented using the same
neighborhood variations as those used in OK and IDW.

0 500 1,000 1,500 2,000 2,500 3000
0

500

1000

1500

2000

2500

3000

Observed precipitation (mm)

E
st

im
at

ed
 p

re
ci

pi
ta

tio
n 

(m
m

)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

Observed precipitation (mm)

E
st

im
at

ed
 p

re
ci

pi
ta

tio
n 

(m
m

)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

Observed precipitation (mm)

E
st

im
at

ed
 p

re
ci

pi
ta

tio
n 

(m
m

)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

Observed precipitation (mm)

E
st

im
at

ed
 p

re
ci

pi
ta

tio
n 

(m
m

)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

Observed precipitation (mm)

E
st

im
at

ed
 p

re
ci

pi
ta

tio
n 

(m
m

)

HASM

spline

IDWkriging

HASM-PRE
Fig. 3 Observed and estimated
precipitation using different
models

280 N. Zhao, T. Yue



Table 1 compares the means and standard deviations of 20
RMSEs and MAEs obtained using the five interpolators.
RMSESTD and MAESTD mean the standard deviations of
20 RMSEs and MAEs, respectively. Those obtained using
HASM-PRE are lower than those of other methods. The
results of HASM, kriging, IDW and spline show small dif-
ferences. HASM is the least exact of the five based on MAE
values. The largest RMSE value is obtained by IDW and
smoothing routines of HASM-PRE, HASM, kriging and
spline result in lower RMSEs. The smallest RMSE value is
produced by HASM-PRE since the consideration of mixed
derivative fxy which makes the simulation surface smoother
(Malik and Savita 1992). The standard deviations of RMSEs
and MAEs also indicate the best performance of HASM-
PRE, which is followed by kriging method.

Scatter correlation plots for the observed and predicted
precipitation (Fig. 3) suggest that HASM-PRE estimates the
annual mean precipitation quite reliably. Many simulation
points are relatively far from the straight line of y = x by
using other methods including HASM. Overestimation of
precipitation is obvious for HASM-PRE, HASM and
kriging. Under- and overestimation of precipitation are evi-
dent from IDW and spline. The correlation coefficient be-
tween predicted and observed values is 0.99 for HASM-PRE
and 0.97 for HASM. The correlation coefficients are 0.97,
0.96 and 0.96 for kriging, IDW and spline, respectively.

In order to make a better comparison between HASM-PRE
and HASM, Fig. 4 displays the difference between the simu-
lated value and observed value at each validation point pro-
duced by both methods. It is evident that large errors usually
occur in rough mountain areas, western China and the border
of China, for both methods. However, in the inland regions of
China, the absolute values of relative errors produced by
HASM-PRE are much smaller than those by HASM at most
of the locations. This is possibly because of the lack of mixed
partial derivative of the surface, which reflects the local
warping of the surface, and then the particular discrete form
of fxy. The feature of HASM-PRE is that it performs better in
the inland areas of China than in its borders, possibly due to
the lack of sample information outside the boundary, which
means that there is no difference schemes to characterize the
distribution patterns of precipitation for fxy at the point (i, j)
near the Chinese border. The performance of HASM displays
no clear pattern. Large errors can be seen both in internal
points and boundary points for HASM. This is possibly be-
cause of the undefined discrete schemes of HASM with
respect to the physical variables of precipitation.

Besides the bad performance near the border, the predic-
tions of HASM-PRE and HASM are relatively poor in the
regions of complex topography, such as in Hengduan moun-
tains (Fig. 4). Large precipitation totals are mostly caused by
orogaphical lifting of the air masses which thus yield a large

Fig. 4 Relative errors produced
by HASM-PRE and HASM at
each verification point
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Fig. 5 Predicted mean annual precipitation over the period 1951–2010 using: a HASM-PRE, b HASM, c kriging, d IDW, e spline



amount of orographical precipitation on the wind-exposed
slopes. The performance of HASM-PRE and HASM is
worse near the high mountains of inner China since both
methods have not considered the considerably varying land-
forms. Several studies show that the accuracy of interpolations
could be improved if the effect of many geographical and
topographical factors on climate parameters are considered in
the interpolation process (Ninyerola et al. 2000; Marquinez
et al. 2003; Portales et al. 2010; Aalto et al. 2012; Samanta
et al. 2012). It seems worthwhile to account for this exhaustive
secondary information into the mapping of precipitation es-
pecially in rough terrain areas, such as in China.

4.2 Comparison of the interpolated maps by the five
techniques

The patterns of precipitation distribution produced by differ-
ent interpolators using 712 points are displayed in Fig. 5. All
simulation surfaces show the increasing precipitation pattern
from northwest to southeast over China. Spline has a serious
oscillation problem which makes the minimum output
(−59.88 mm) lower and the maximum output (2,734.40 mm)
higher than those of other techniques (Fig. 5e). Moreover,
spline predicts negative precipitation especially in data-
sparse regions which does not agree with the actual situations.
IDW interpolation produces many “bull’s eyes,”which means
that we can see higher or lower values near observed locations
(Fig. 5d). This phenomenon is possibly due to the fewer points
used in IDW. If we use more points in the vicinity of the
outliers, we can expect a smoother result. In addition, we find
there are some obvious outliers in the southern and eastern
China for all methods, which make this phenomenon even
more pronounced.We find that these stations are located in the
mountainous areas. The precipitation amount in these places is
higher than in the surrounding areas possibly because of the
Foehn effect. The smoother surfaces can be obtained by
HASM-PRE, HASM and kriging. However, negative precip-
itation is produced by HASM as is shown in Fig. 5b, and the
kriging method does not show significantly greater predictive
capability than HASM-PRE, as illustrated in Table 1.

4.3 The main reason for the improved accuracy
of HASM-PRE

HASM-PRE takes into account the third equation in Gauss
equations and uses the particular discrete form of fxy. We have

shown that the performance of HASM-PRE is better than
HASM and other classical methods when interpolating the
annual precipitation in China. We then explore the main
reason for the improvement in accuracy of HASM-PRE by
comparing different discrete schemes of fxy.

For the inner grid points, the classic discrete scheme of fxy
is as follows:

f xy
� �

i; jð Þ
≈
f iþ1; jþ1− f i−1; jþ1 þ f i−1; j−1− f iþ1; j−1

4h2
; i ¼ 1;…; I ; j ¼ 1;…; J ;

which uses the points distributed in the surrounding of the
point (xi, yj). However, this discrete form of fxy leads to
algebraic systems with loss of diagonal dominance and thus
computational complexity, which eventually leads to a stack
overflow in HASM simulation (Yue 2011).

Since fxy can be also expressed by using neighboring ob-
servations located in the southeast–northwest or the south-
west–northeast direction, we then check the performance of
HASM based on these two different discrete forms of fxy. For
the southwest–northeast direction, the discrete scheme of fxy is

f xy
� �

i; jð Þ
≈
f iþ1; jþ1− f iþ1; j− f i; jþ1 þ 2 f i; j− f i−1; j− f i; j−1 þ f i−1; j−1

2h2

i ¼ 1 ; … ; I ; j ¼ 1 ; … ; J ˙:

ð17Þ

The results are shown in Table 2. HASM.MOD denotes
that we use the three equations of Gauss equations and
employ the discrete forms of fxy as is shown in Eq. 17.
Combined with the results in Table 1, HASM.MOD per-
forms slightly better than HASM but worse than HASM-
PRE. It can be concluded that the improvement of the sim-
ulation accuracy is not significant by introducing the third
equation in Gauss equations. Compared with the introduc-
tion of the third equation, the special discrete scheme of fxy
based on the distribution characteristic of precipitation has a
greater effect on the simulation accuracy.

5 Discussion

We calculated RMSEs andMAEs to compare the accuracy of
HASM-PRE, HASM and other interpolators — kriging,
IDW, spline — which demonstrated the highest accuracy of
HASM-PRE. Scatter plots and precipitation distribution sur-
faces were also displayed to show the superiority of HASM-
PRE over other spatial interpolation methods. Kriging results
rely heavily on a previously well-chosen semivariogram,
which is difficult to estimate and validate against a true
covariance function. Moreover, kriging method generally
assumes normally distributed variables, which is a difficult
condition to satisfy in practical applications (Goovaerts 1999).
Another frequently used model in spatial interpolation is the
IDW method. There are no assumptions required of the input
data for the application of IDW. However, IDW relies mainly

Table 2 Errors for annual mean precipitation generated by HASM-PRE
and HASM.MOD

Methods HASM-PRE HASM.MOD

RMSE (mm) 91.04 131.74

MAE (mm) 52.87 89.58
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on the inverse of the distance raised to the power and can also
be controlled by limiting the input points for calculating each
interpolated point. Spline is an interpolation method that
estimates values using a mathematical function that minimizes
overall surface curvature, resulting in a smooth surface.
However, this method tends to generate steep gradients in
data-poor areas leading to compounded errors in the estima-
tion process (Wang 2006). Compared with these popular
methods, HASM avoids the subjectivity involved in defining
variogrammodels and neighborhoods. Besides, just like IDW,
there are no assumptions required of the input data and the
solutions are estimated by an iterative process like spline.

Since we solve the partial differential equations of the
surface in the whole studied area, HASM can be regarded
as a global method in which all the available data for a given
study area are used, resulting in a smooth surface. In fact,
smoothness is inherent to HASM because the partial deriv-
atives of the simulated surface f are supposed to exist.
Meanwhile, HASM can be treated as a local method as it
capitalizes on the spatial correlation between neighboring
observations by using Taylor expansion. Consequently, local
anomalies can be accommodated without affecting the value
of interpolation at other points on the surface. A combination
of global technique and local technique ensures that HASM
is another alternative surface modeling method. However,
the earlier version of HASM lacks integrity in theory, and the
symbols and the discrete ways of the differential equations in
HASM are unrelated with precipitation, which make HASM
perform worse in interpolating precipitation.

In terms of the fundamental theorem of surface, a surface
is uniquely defined by the first fundamental coefficients and
the second fundamental coefficients (Henderson 1998;
Toponogov 2006). The geometric properties determined by
the first fundamental coefficients of a surface are called the
intrinsic geometric properties, such as the lengths of curves
in the surface, which do not depend on the shape of the
surface. The second fundamental coefficients reflect the
local warping of the surface, namely, its deviation from
tangent plane at the point under consideration (Liseikin
2004). HASM ignores the second fundamental coefficient M,
yet HASM-PRE is theoretically perfect, which insures that it
performs best and improves HASM’s simulation skills. In
addition, the difference scheme for the mixed derivative fxy used
in this study is particularly important for accurate precipitation
interpolation in China. Another different feature between
HASM-PRE and HASM is that HASM-PRE considers the
whole studied area while HASM ignores the boundary points.
HASM-PRE is still sensitive to edge effects possibly because of
its reliance on Taylor expansion. However, like other tech-
niques, if additional stations beyond the boundary are available,
we can expect a better result near the edge of China.

Distribution of precipitation is controlled by several geo-
graphical and topographical factors, like DEM, distance from

the coastline, slope, orientation, and exposure (Basisr et al.
1994; Goovaerts 2000; Marquinez et al. 2003). Precipitation
varies severely within a short distance, so it is difficult to
interpolate accurately using HASM when we ignore such
obvious factors. This is equally true with kriging, and auxil-
iary variables can be used in several ways, such as in co-
kriging and kriging with external drift (Seo 1996; Aalto et al.
2012). Similarly, HASM-PRE has the potential for increased
accuracy via introduction of additional independent variables
known to have effects on precipitation.

6 Conclusions

Many interpolation methods are used in climatology but all
have their limits so that the quality of estimations produced
varies greatly with context. In this research, based on the spatial
distribution characteristics of mean annual precipitation in
China, we give a modification of HASM, namely, HASM-
PRE. We use the wealth of expert knowledge on the spatial
patterns of precipitation to establish the discrete schemes of the
partial differential equations of the surface theory. Then we
validate the effectiveness of HASM-PRE by comparing it with
HASM and other popular interpolators. Our study showed that
the proposed technique is more accurate for predicting the
spatial patterns of precipitation than other methods. The pro-
posedmethod can be used for calculating precipitation for other
areas in other temporal scale by taking into account the different
difference schemes for the respective area.

Its disadvantage is that HASM-PRE becomes more com-
plex as one begins to solve more complicated nonlinear
system and thus requires more computing and modeling
time. However, HASM-PRE can be developed further for
application in the parallel environment. The parallel imple-
mentation of HASM-PRE combined with ancillary variables
makes HASM-PRE more perfect.
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