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Abstract A method of surface modeling, high accuracy surface modeling (HASM),
which is based on the fundamental theorem of surface theory, is modified. The earlier
version of HASM is theoretically incomplete and almost performs similar or slightly
better than other methods being compared in the practical applications which defi-
nitely limit its promotion. According to the fundamental theorem of surface theory,
we modify HASM by adding another important nonlinear equation to solve the low
accuracy in some cases and make HASM have a complete and solid theory foundation.
A numerical test and a real-world example are employed to comparatively validate the
effectiveness of this modification. It is found that the accuracy of the simulation result
has a great improvement. Another feature of the modified version of HASM is that it
is theoretically perfect since it considers the third equation of the surface theory. The
modified HASM will be useful with a wide range of spatial interpolation, particularly
if the focus on simulation accuracy.
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1 Introduction

The methods of surface modeling have been experienced rapid development since the
first digital elevation model was developed and the error problem has become a major
concern since the 1960s (Crain 1970; Li and Zhu 2000; Stott 1977). Although several
improvement techniques are proposed, the error problem still exists which has long
troubled surface modeling (Wise 2000). To find a solution for the error problems pro-
duced by geographical information, high accuracy surface modeling (HASM) method
is thus developed by Yue (2011) in terms of the fundamental theorem of surface theory.

Researches on HASM can be divided into four informal stages: HASM1, HASM2,
HASM3 and HASM4 (Yue 2011). Several methods are developed to solve the equa-
tions of the corresponding version of HASM, such as modified Gauss–Seidel method
(MGS), preconditioned conjugate gradient method (PCG), adaptive method (AM)
and multi-grid method (MG) (Yue et al. 2010a,b; Yue 2011; Chen et al. 2012). The
accuracy of HASM4 with PCG method is higher than the previous versions (Yue and
Du 2006; Yue and Wang 2010; Chen et al. 2012). Numerical tests have shown that
HASM4 is usually much more accurate than the classical methods such as kriging,
inverse distance weighting (IDW) method, and splines (Yue et al. 2007, 2010a,b). Sur-
face modeling of digital elevation model, terrestrial ecosystems, ecological diversity,
and soil properties also indicate that HASM has increased interpolation accuracy (Yue
2011). However, by doing more experiments, we found a phenomenon that HASM
usually performs slightly better than other methods being compared in practical appli-
cations. Besides, there are also some cases, especially in climate research, indicating
that the accuracy of HASM is not as good as kriging method even the initial values
of HASM obtained by kriging method. Because of these, the widespread application
of HASM is limited. In addition, HASM has not been publicly accepted by end-users
since the theoretical basis of it is not complete and thus is not robust.

To completely resolve error problem of HASM and promote its application, the aim
in this paper is to give an improved version of it in terms of the fundamental theorem
of surface theory. This new model will be compared to the previous one (HASM4),
where HASM4 employs only part of the partial differential equations of the surface
theory. We denote the new version of HASM here and hereafter is Mod.HASM. In
numerical experiments, Gauss synthetic surface is used to validate the new model.
As an interesting and important application of the interpolation technique, in the real
world examples, we apply Mod. HASM to simulate annual mean temperature of China
during 1951–2010. Simulation accuracy of Mod.HASM is compared with that of the
previous version (HASM4) and other classical methods: kriging, IDW and splines,
which have been the most widely used in climate research.

2 The basic theory of HASM

As a new surface modeling method, HASM is based on the fundamental theorem of
surface theory which makes sure that a surface is uniquely defined by the first and the
second fundamental coefficients of it (Henderson 1998; Somasundaram 2005). In this
section, the theoretical basis of HASM is given briefly.
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The fundamental theorem of surface theory is as follows (Su and Hu 1997; Soma-
sundaram 2005).

Theorem When the coefficients of the two quadratic differential forms Edu2 +
2Fdudv + Gdv2, Ldu2 + 2Mdudv + Ndv2, are such that the first quadratic form
is positive definite and the six coefficients E, F, G, L , M, N satisfy Gauss–Codazii
equations, there exists a surface z = f (x, y) uniquely determined by (1) under the
given initial condition f (x, y) = f (x0, y0)(x = x0, y = y0).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fxx = �1
11 fx + �2

11 fy + L√
E+G−1

fyy = �1
22 fx + �2

22 fy + N√
E+G−1

fxy = �1
12 fx + �2

12 fy + M√
E+G−1

fy fxy+ fx fxx

(1+ f 2
x + f 2

y )3/2 = L
E fx + M

G fy

fx fxy+ fy fyy

(1+ f 2
x + f 2

y )3/2 = M
E fx + N

G fy

, (1)

where, E = 1 + f 2
x , F = fx · fy, G = 1 + f 2

y , L = fxx√
1+ f 2

x + f 2
y

, M =
fxy√

1+ f 2
x + f 2

y

, N = fyy√
1+ f 2

x + f 2
y

, �1
11 = G Ex −2F Fx +F Ey

2(EG−F2)
, �2

11 = 2E Fx −E Ey−F Ex

2(EG−F2)
, �1

22 =
2G Fy−GGx −FG y

2(EG−F2)
, �2

22 = EG y−2F Fy+FGx

2(EG−F2)
, �1

12 = G Ey−FGx

2(EG−F2)
, �2

12 = EGx −F Ey

2(EG−F2)
, and

the Gauss–Codazii equations are

{
L y − Mx = L�1

12 − N�2
11 + M(�2

12 − �1
11)

My − Nx = L�1
22 − N�2

12 + M(�2
22 − �1

12)
. (2)

E, F, G are the first fundamental forms and indicate how the surface inherits the
natural inner product of R3, in which R3is the set of triples (x, y, z) of real num-
bers (Carmo 2006). The coefficients of the first fundamental forms of a surface yield
information about some geometric properties, which are called intrinsic geometric
properties including angles of tangent vectors, the lengths of curves, the areas of
regions, and so on. L , M, N are the second fundamental coefficients reflecting the
local warping of the surface, namely its deviation from the tangent plane at the point
under consideration (Liseikin 2004; Toponogov 2006). �1

11, �
2
11, �

1
22, �

2
22, �

1
12, �

2
12

are the Christoffel symbols, which depend only on the first fundamental coefficients
E, F, Gand their derivatives. The first three equations of (1) are known as Gauss
equations and the last two are called Weingarten equations. Somasundaram (2005)
has shown that Weingarten equations are supposed to be complementary to Gauss
equations and Gauss equations are known as the partial differential equations of the
surface theory.

In terms of the fundamental theorem of surfaces, the first and second fundamental
coefficients must satisfy the Gauss equations for defining a surface. So, the main task
of HASM is to solve these Gauss equations:
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⎧
⎪⎪⎨

⎪⎪⎩

fxx = �1
11 fx + �2

11 fy + L√
E+G−1

fyy = �1
22 fx + �2

22 fy + N√
E+G−1

fxy = �1
12 fx + �2

12 fy + M√
E+G−1

. (3)

Former researches (Yue et al. 2007, 2010a,b) have shown that different combinations
of the equations in the equation set (3) result in different results based on simulation
accuracy. Moreover, numerical problems will arise when the third equation in Gauss
equations is included in HASM (Yue 2011). Previous studies also indicated that the
best combination with the least error, namely HASM4, is as follows (Yue et al. 2007):

{
fxx = �1

11 fx + �2
11 fy + L√

E+G−1

fyy = �1
22 fx + �2

22 fy + N√
E+G−1

. (4)

Let {(xi , y j )|0 ≤ i ≤ I + 1, 0 ≤ j ≤ J + 1} be the computational grids and h
be the grid size in x and y directions. Finite difference methods are used for solving
these differential equations. The discrete forms of fx , fy, fxx and fyy are as follows,

( fx )(i, j) ≈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1, j − f0, j
h i = 0

fi+1, j − fi−1, j
2h i = 1, . . . , I,

f I+1, j − f I, j
h i = I + 1

( fxx )(i, j) ≈

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f0, j −2 f1, j + f2, j

h2 i = 0

fi−1, j −2 fi, j + fi+1, j

h2 i = 1, . . . , I

f I+1, j −2 f I, j + f I−1, j

h2 i = I + 1

( fy)(i, j) ≈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fi,1− fi,0
h j = 0

fi, j+1− fi, j−1
2h j = 1, . . . , J,

fi,J+1− fi,J
h j = J + 1

( fyy)(i, j) ≈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fi,0−2 fi,1+ fi,2
h2 j = 0

fi, j−1−2 fi, j + fi, j+1

h2 j = 1, . . . , J

fi,J+1−2 fi,J + fi,J−1
h2 j = J + 1

Correspondingly, Eq. (4) can be approximated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f n+1
i+1, j −2 f n+1

i, j + f n+1
i−1, j

h2 = (�1
11)n

i, j
f n
i+1, j − f n

i−1, j
2h + (�2

11)n
i, j

f n
i, j+1− f n

i, j−1
2h + Ln

i, j√
En

i, j +Gn
i, j −1

f n+1
i, j+1−2 f n+1

i, j + f n+1
i, j−1

h2 = (�1
22)n

i, j
f n
i+1, j − f n

i−1, j
2h + (�2

22)n
i, j

f n
i, j+1− f n

i, j−1
2h + N n

i, j√
En

i, j +Gn
i, j −1

,

(5)

where, n represents the number of iterations.

En
i, j = 1 +

(
f n
i+1, j − f n

i−1, j

2h

)2

,

Fn
i, j =

(
f n
i+1, j − f n

i−1, j

2h

) (
f n
i, j+1 − f n

i, j−1

2h

)

,
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Gn
i, j = 1 +

(
f n
i, j+1 − f n

i, j−1

2h

)2

,

Ln
i, j =

f n
i−1, j −2 f n

i, j + f n
i+1, j

h2
√

1 +
(

f n
i+1, j − f n

i−1, j
2h

)2

+
(

f n
i, j+1− f n

i, j−1
2h

)2

N n
i, j =

f n
i, j−1−2 f n

i, j + f n
i, j+1

h2
√

1 +
(

f n
i+1, j − f n

i−1, j
2h

)2

+
(

f n
i, j+1− f n

i, j−1
2h

)2
,

(�1
11)

n
i, j = Gn

i, j (En
i+1, j − En

i−1, j )h − 2Fn
i, j (Fn

i+1, j − Fn
i−1, j )h + Fn

i, j (En
i, j+1 − En

i, j−1)h

4(En
i, j Gn

i, j − (Fn
i, j )

2)h2 ,

(�1
22)

n
i, j = 2Gn

i, j (Fn
i, j+1 − Fn

i, j−1)h − Gn
i, j (G

n
i+1, j − Gn

i−1, j )h − Fn
i, j (G

n
i, j+1 − Gn

i, j−1)h

4(En
i, j Gn

i, j − (Fn
i, j )

2)h2 ,

(�2
11)

n
i, j = 2En

i, j (Fn
i+1, j − Fn

i−1, j )h − En
i, j (En

i, j+1 − En
i, j−1)h − Fn

i, j (En
i, j+1 − En

i, j−1)h

4(En
i, j Gn

i, j − (Fn
i, j )

2)h2 ,

(�2
22)

n
i, j = En

i, j (G
n
i, j+1 − Gn

i, j−1)h − 2Fn
i, j (Fn

i, j+1 − Fn
i, j−1)h + Fn

i, j (G
n
i+1, j − Gn

i−1, j )h

4(En
i, j Gn

i, j − (Fn
i, j )

2)h2 .

The matrix formulation of Eq. (5) can be expressed as,

{
Axn+1 = dn

Bxn+1 = qn , (6)

where xn+1 = ( f n+1
1,1 , . . . , f n+1

1,J , f n+1
2,1 , . . . , f n+1

2,J , . . . , f n+1
I−1,1, . . . , f n+1

I−1,J , f n+1
I,1 ,

. . . , f n+1
I,J )T ,

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−2I I
I −2I I

. . .
. . .

. . .

I −2I I
I −2I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

I ·J×I ·J

, I =
⎡

⎢
⎣

1
. . .

1

⎤

⎥
⎦

J×J

.

B =
⎡

⎢
⎣

B̂
. . .

B̂

⎤

⎥
⎦

I ·J×I ·J

, B̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

J×J,
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A and B denote the coefficient matrices of Eq. (5) and d, q are the right-hand vectors
of Eq. (5), respectively. The boundary value of HASM4 is obtained by other surface
modeling methods.

Be themselves, Eq. (4) do not determine unique solution function, in general, pro-
vided f is sufficiently smooth. To single out particular solution, value z0 of solution
function must be specified at some point (x0, y0). The following equality-constrained
least squares problem is developed to make the interpolated values equal to or approx-
imate to the sampled values at the sampling points,

⎧
⎨

⎩

min

∥
∥
∥
∥

[
A
B

]

xn+1 −
[

d
q

]n∥∥
∥
∥

2
Sxn+1 = k

, (7)

where S(l, (i − 1) · J + j) = 1, k(l) = f i, j , this means the sampled value is f i, j at
the lth sampling point (xi , y j ).

An interesting way to obtain an approximate solution to (7) is to solve the uncon-
strained least squares problem

min
x

∥
∥
∥
∥
∥
∥

⎡

⎣
A
B
λS

⎤

⎦ xn+1 −
⎡

⎣
d
q
λk

⎤

⎦

n∥
∥
∥
∥
∥
∥

. (8)

For a suitableλ (Bjorck 1968; Golub and Van Loan 2009), this problem (8) is equivalent
to the symmetric positive definite linear system

W xn+1 = vn, (9)

where W = AT A + BT B + λ2ST S, v = AT d + BT q + λ2ST k, λ is the weight
of the sampling points. For large values of λ, however, numerical problems arise
(Golub and Van Loan 2009). Fortunately, we found that the simulation accuracy of
HASM is less sensitive to the selection of λ when the value of it is between 1 and
10. In addition, the accuracy decreases if λ is larger than 10. Since λ affects the
contribution of the sampling points to the simulated surface, in a complex region, a
smaller value of λ is selected and a bigger value is selected in a flat region (Chen and
Yue 2010).

Modified Gauss–Seidel method (MGS), preconditioned conjugate gradient method
(PCG), adaptive method (AM) and multi-grid method (MG) have been used to
solve the linear system (9) (Yue et al. 2010a,b; Yue 2011; Chen et al. 2012).
Results show that AM is the fastest method and uses minimum storage space com-
pared to other methods. The method with the highest accuracy, however, is PCG
method (Yue 2011). With the development of the high performance computing, more
attention has been paid to simulation accuracy rather than computing speed and
memory usage. Therefore, we use PCG method to solve the linear system in this
study.
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3 Modifications of HASM

Somasundaram (2005) has shown that Gauss equations are the partial differential
equations of the surface theory while Weingarten equations are the supplement to
Gauss equations. Based on this, HASM4 takes into account only the Gauss equations,
but without considering the mixed derivatives fxy = �1

12 fx + �2
12 fy + M√

E+G−1
of

this equation set (Yue 2011), which doesn’t follow the content of the surface theory.
Next, we add this equation into HASM4 to give a modified version of it, which first
ensures that HASM is integral theoretically.

Consider the following Gauss equations (3),

⎧
⎪⎪⎨

⎪⎪⎩

fxx = �1
11 fx + �2

11 fy + L√
E+G−1

fyy = �1
22 fx + �2

22 fy + N√
E+G−1

fxy = �1
12 fx + �2

12 fy + M√
E+G−1

.

In the development of HASM (HASM2), researchers have considered the third
equation in Gauss equations (Yue and Du 2006), and for the inner grid points, the
discrete scheme of fxy in HASM2 is

( fxy)(i, j) = fi+1, j+1 − fi−1, j+1 + fi−1, j−1 − fi+1, j−1

4h2 , i = 1, . . . , I, j = 1, . . . , J.

For the boundary points, the discrete value of fxy is the initial value at the correspond-
ing point. However, this discrete form of fxy leads to algebraic systems with loss of
diagonal dominance and thus computational complexity, which eventually leads to a
stack overflow in HASM2 simulation (Yue 2011). We now form the following type of
difference:

( fxy)(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1,1− f1,0− f0,1+ f0,0

h2 i = 0, j = 0

f1,J+1− f1,J − f0,J+1+ f0,J

h2 i = 0, j = J + 1

f1, j+1− f0, j+1− f1, j−1+ f0, j−1

2h2 i = 0, j = 1, . . . , J

fI+1,1− f I,0− f I,1+ f I+1,0

h2 i = I + 1, j = 0

f I,J − f I+1,J − f I,J+1+ f I+1,J+1

h2 i = I + 1, j = J + 1

f I+1, j+1− f I, j+1− f I+1, j−1+ f I,J−1

2h2 i = I + 1, j = 1, . . . , J

fi+1,1− fi+1,0− fi−1,1+ fi−1,0

2h2 i = 1, . . . , I, j = 0

fi+1,J+1− fi+1,J − fi−1,J+1+ fi−1,J

2h2 i = 1, . . . , I, j = J + 1

fi+1, j+1− fi+1, j − fi, j+1+2 fi, j − fi−1, j − fi, j−1+ fi−1, j−1

2h2 i = 1, . . . , I, j = 1, . . . , J.

For the inner point (xi , y j ), this formulation of derivative makes full use of the
information at this point and restores diagonal dominance (Karniadakis and Kirby
2003). Therefore, the equations of the modified version of HASM are as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f n+1
i+1, j −2 f n+1

i, j + f n+1
i−1, j

h2 = (�1
11)

n
i, j

f n
i+1, j − f n

i−1, j
2h + (�2

11)
n
i, j

f n
i, j+1− f n

i, j−1
2h + Ln

i, j√
En

i, j +Gn
i, j −1

f n+1
i, j+1−2 f n+1

i, j + f n+1
i, j−1

h2 = (�1
22)

n
i, j

f n
i+1, j − f n

i−1, j
2h + (�2

22)
n
i, j

f n
i, j+1− f n

i, j−1
2h + N n

i, j√
En

i, j +Gn
i, j −1

f n+1
i+1, j+1− f n+1

i+1, j − f n+1
i, j+1+2 f n+1

i, j − f n+1
i−1, j − f n+1

i, j−1+ f n+1
i−1, j−1

2h2 = (�1
12)

n
i, j

f n
i+1, j − f n

i−1, j
2h + (�2

12)
n
i, j

f n
i, j+1− f n

i, j−1
2h + Mn

i, j√
En

i, j +Gn
i, j −1

(10)

where,

En
i, j = 1 +

(
f n
i+1, j − f n

i−1, j

2h

)2

,

Fn
i, j =

(
f n
i+1, j − f n

i−1, j

2h

) (
f n
i, j+1 − f n

i, j−1

2h

)

,

Gn
i, j = 1 +

(
f n
i, j+1 − f n

i, j−1

2h

)2

,

Ln
i, j =

f n
i−1, j −2 f n

i, j + f n
i+1, j

h2
√

1 +
(

f n
i+1, j − f n

i−1, j
2h

)2

+
(

f n
i, j+1− f n

i, j−1
2h

)2
,
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Then, just as in HASM4, the constraint equation about sample point information is
added to Eq. (10) and the formulation of Mod.HASM can be expressed as,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

∥
∥
∥
∥
∥
∥

⎡

⎣
A
B
C

⎤

⎦ zn+1 −
⎡

⎣
d
q
p

⎤

⎦

n∥
∥
∥
∥
∥
∥

s.t. Sz(n+1) = k

, (11)
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⎢
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. . .
. . .
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. . .
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A, B, C are the left hand sides of Eq. (10), respectively. The structures of A, B, S, k
are the same in HASM4 and Mod.HASM, but the dimensions are different.

By introducing a suitable parameter λ, we finally get the matrix equation of
Mod.HASM,

Axn+1 = b
n
, (12)
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where, A = AT A + BT B + CT C + λ2ST S reflects the local relationship between
each grid point and the surrounding points since A is a sparse matrix of which the
nonzero elements in each row denote the coefficients of the relationship. b = AT d +
BT q + CT p + λ2ST k is the right-hand vector and x is a vector that each element
denotes the simulated value of the corresponding grid point.

4 Numerical and real-world tests

In this section, we first take Gauss synthetic surface as the test surface to test the
performance of the modified version so that the true value is able to be predetermined
to avoid the uncertainty caused by uncontrollable data errors. Since air temperature
is the necessary input for sound agricultural planning, the second part of this section
applies Mod.HASM and HASM4 to simulate annual mean temperature of China for
the considered temporal period (1951–2010).

4.1 Numerical tests

Gauss synthetic surface is expressed as:

f (x, y) = 3(1 − x)2e−x2−(y+1)2 − 10
( x

5
− x3 − y5

)
e−x2−y2 − e−(x+1)2−y2

3
,

the computational domain is [−3, 3] × [−3, 3].
Root mean square error (RMSE) is used to evaluate the performance of Mod.HASM

and HASM4. The formulation of RMSE is

RMSE =
√

∑N
k=1 ( fk − f k)

2

N
,

where fk is the true value at the kth point (xi , y j ); f k is the simulated value; N is the
number of validation points. The value of this criterion should be close to zero if the
method is accurate.

For different h, we then compare the performances of HASM4, Mod.HASM, krig-
ing, IDW and splines (Table 1). The outer iterative criterion is Gauss–Codazii equations
and, for a fixed n, the inner stopping criterion of Eq. (12) is ‖b

n − Axn+1‖2 ≤ 10−12.
A phenomenon that the accuracy of HASM4 is inferior to splines occurred in this

case study when the grid number are 61 × 61, 301 × 301 and 601 × 601. Moreover,

Table 1 The values of RMSE
for Mod.HASM, HASM4,
kriging, IDW and splines

Grid numbers 61 × 61 301 × 301 601 × 601 1,201 × 1,201

Mod.HASM 0.0410 0.0135 0.0004 0.0001

HASM4 0.0979 0.0660 0.0022 0.0010

Kriging 0.1369 0.0830 0.0033 0.0015

IDW 0.3197 0.2316 0.0762 0.0750

Splines 0.0426 0.0171 0.0003 0.0629
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Table 2 The CPU time (s) for
Mod.HASM, HASM4, kriging,
IDW and splines

Grid numbers 61 × 61 301 × 301 601 × 601 1,201 × 1,201

Mod.HASM 176 2,711 3,032 3,745

HASM4 62 398 406 489

Kriging 249 2,672 2,720 2,752

IDW 53 146 148 154

Splines 102 152 154 170

when the grid number are 601 × 601 and 1,201 × 1,201, the accuracy of HASM4 is
slightly better than kriging method. However, for different computational scales, the
simulation accuracy of Mod.HASM is much higher than HASM4 and other classical
interpolation methods.

Table 2 gives the CPU time for each method. It should be noted that the required
CPU times are significantly different for the above methods. The computational time
for IDW is typically small, since it is easy to realize. Because of the computation of
the semi-variogram, the computational time of kriging is large. Mod.HASM takes a
longer time than HASM4 due to the more complex nonlinear system. Compared with
other methods, Mod.HASM spends the most time expect for the case 61 × 61. Since
the introduction of the third equation in Mod.HASM, the memory requirement of it is
two times greater than that of HASM4. Compared with other methods, both HASM4
and Mod.HASM require large memory. However, Mod.HASM can be realized further
in parallel to improve the efficiency of it.

4.2 A real word example

Sixty (1951–2010) years annual mean temperature data from 711 meteorological sta-
tions in China are interpolated. Figure 1 shows the distribution of the meteorological
stations. We compare the performance of HASM4, Mod.HASM and those of kriging,
IDW, and splines method. These classical methods are performed using the module
of 3D analyst ArcGIS 10.1. We compare different parameters for kriging, IDW and
splines and decide the best parameters for each technique with the smallest RMSE
values. For kriging, the exponential, spherical, Gaussian and linear model are fitted to
the experimental variogram and the number of the closest samples chosen varied from
5 to 30. We find that, in all implementations of kriging, the Gaussian semivariogram
model with 16 samples provides the overall best results. IDW is estimated with pow-
ers of 1, 2, 3 and 4. The lowest RMSE value for IDW is found with a neighborhood
of 16 points and power of one. For splines, the regularized and tension methods are
implemented using the same neighborhood variations as used in kriging and IDW. The
best result for splines is provided using tension method with eighteen neighborhood
points.

The climate data are divided into two groups: we select at random 85 % of them to
interpolate the temperature surface, while we use the remaining 15 % for validation.
Three indices: RMSE, MAE and MRE are calculated from the station values and
interpolated values at each validation sample site. The formulations of MAE and
MRE are:
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Fig. 1 Location of meteorological stations

MAE =
∑

k=1,...,N

∣
∣ fk − f k

∣
∣

N
, MRE =

∑

k=1,...,N

∣
∣ fk − f k

∣
∣

fk N
,

where fk, f k and N have the same meanings as in RMSE.
Yue (2011) has shown that the larger the ratio between sampled points and grid

points, the smaller the simulation error of HASM. Since we just compare the simulation
accuracy of different methods under the same conditions, we fix the grid number based
on the studied area and the distribution of the meteorological stations. Then, a cell size
of 10 × 10 km is chosen in this research. Correspondingly, the values of I, J in x and
y are 405 and 485, respectively. Results show that the computational time for IDW
is 143 seconds. For splines, kriging, HASM4 and Mod.HASM, the computational
times are 159, 2,602, 506, and 3,079 s, respectively. IDW takes the least time while
Mod.HASM spends the most. However, the results of the accuracy tests (Table 3)

Table 3 The means of MAEs,
MREs and RMSEs of 20
validation sets for Mod.HASM,
HASM4, kriging, IDW and
splines

Methods Mod.HASM HASM4 Kriging IDW Splines

MAE 1.1571 1.3109 1.3205 1.3472 1.4661

MRE 0.1731 0.2061 0.2336 0.2688 0.3927

RMSE 1.8283 2.0856 2.0990 2.1142 2.1117
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Fig. 2 Estimated versus observed annual mean temperature (◦C). a Mod.HASM; b HASM4; c Kriging;
d IDW; e Splines

show that Mod.HASM produces the most accurate interpolated temperature data.
The differences between the MAE, MRE and RMSE values of HASM4 and those of
kriging are slight. For annual mean temperature, the results of HASM4, kriging and
IDW methods show very small differences, while splines displays the largest MAE and
MRE values. Through comparing with other methods, Mod.HASM is the optimum
spatial interpolation method for the annual mean temperature based on the validation
results.

Figure 2 shows the estimated values of annual mean temperature against the obser-
vations. The straight line represents the best fit. Mod.HASM estimates the annual
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mean temperature quite reliably as is shown in this figure. Many simulation points
are relatively far from the straight line of y = x by using other methods including
HASM4. The correlation coefficient between predicted and observed values is 0.95
for Mod.HASM and 0.94 for HASM4. The correlation coefficients are 0.94, 0.93
and 0.91 for kriging, IDW and splines, respectively. This analysis also indicates that
Mod.HASM simulation has the highest accuracy.

Ninyerola et al. (2007) state that all models do substantially worse when the interpo-
lation method does not use geographical information. The effects of many geographical
and topographical factors on climate parameters are evaluated by several researchers
(Ninyerola et al. 2007; Apaydin et al. 2011; Samanta et al. 2012). Many studies show
that method of ‘multiple regression plus space residual error’ is better than that of
‘directly interpolated for observe data of temperature’ (Kurtzman and Kadmon 1999;
Liao and Li 2004; Ninyerola et al. 2007; Joly et al. 2011). Since the purpose of this
section is to test the effectiveness of Mod.HASM, more accurate products can be
obtained using ‘multiple regression plus space residual error’ method.

5 Conclusions and discussion

5.1 Conclusions

Based on the fundamental theorem of surface theory, an improved version of HASM,
Mod.HASM, is presented and validated by numerical and real world examples. The
modified HASM is compared with the previous version and also with other classical
interpolation methods: kriging, IDW, and splines. Both numerical and real world tests
reveal that the interpolation accuracy of Mod.HASM is higher than HASM4 and other
classical interpolation methods. Another important feature of Mod.HASM is that it is
theoretically perfect which insures the good performance of this method.

5.2 Discussion

Kriging results rely heavily on a previously well-chosen semivariogram, which is
difficult to estimate and validate against a true covariance function. Besides, kriging
method generally assumes normally distributed variables which is difficult to satisfy
in practical applications (Goovaerts 1999). Another frequently used model in spatial
interpolation is the IDW method. There are no assumptions required of the input data
for the application of IDW. However, IDW relies mainly on the inverse of the distance
raised to the power and also be controlled by limiting the input points for calculating
each interpolated point. The output surface of IDW is sensitive to clustering and the
presence of outliers (Hartkamp et al. 1999). And splines estimates values using a
mathematical function that minimizes overall surface curvature, resulting in a smooth
surface. However, this method tends to generate steep gradients in data-poor areas
leading to compounded errors in the estimation process (Wang 2006).

HASM4 ignores the second fundamental coefficient M while Mod.HASM is theo-
retically perfect, which insures that it performs best and improves HASM’s simulation
skills. In addition, the difference scheme for the mixed derivative fxy used in this study
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avoids several numerical problems and substantial computational complexity (Karni-
adakis and Kirby 2003). For the available sampling information, although our tests
show that Mod.HASM usually takes larger time than other methods, Mod.HASM can
be improved further by adopting a parallel computing scheme.

For end-users, there are some places that need to be considered. The first one is
the parameter λ. Since λ determines the contribution of the sampling points to the
simulated surface, for mathematical surfaces, the most commonly used value for λ is
2 and the value of it ranges from 1 to 10 in real life applications. The selection of λ,
however, is just based on experiences of the past. Further researches will be carried out
about the choice of λ using some relevant theories of inverse and ill-posed problems.
The optimal value of it can be obtained by using generalized cross validation method
(GCV), as mentioned in Hancock and Hutchinson (2006). Other methods for finding
the optimal λ can be found in Golub and Van Loan (1989), Brezinski et al. (2008),
and Reichel et al. (2009), and so on. The second is the choice of the number of the
grid points I, J in x and y directions. These can be determined by the studied area
and the available sampled points. The optimal situation is that there is at least one
sampled point in each grid. However, it is difficult to get enough sampled points in
practice. Fortunately, for a particular application, an interesting phenomenon is found
that when the sampling ratio is larger than a certain threshold, the simulation accuracy
improves slowly, which indicates that the impact of the sampling density is limited.
Therefore, to determine the values of I and J , we should find the threshold value for
a given application through continuous tests.

To make the process of HASM4 and Mod.HASM easier, the grid size h is the
same in the whole process. It seems better to make it changeable based on the studied
area. Yue et al. (2010a,b) and Yue (2011) have shown that the adaptive refinement
technique is very successful in reducing the computational and storage requirement
for solving the partial differential equations of HASM. However, studies also show that
the computational accuracy of it is lower than PCG method because of the subjectivity
of the choice of the step size. Potentially, one may consider the finite-difference formula
of higher order with the adaptive choice of h, as suggested in Naumova et al. (2012), for
example. Mod.HASM in this study can be developed further to realize in the parallel
environment with this adaptive technique when the grid resolution at the initial iteration
is selected properly.

References

Apaydin, H., Anli, A.S., Ozturk, F.: Evaluation of topographical and geographical effects on some climatic
parameters in the Central Anatolis Region of Turkey. Int. J. Climatol. 31, 1264–1279 (2011)

Bjorck, A.: Iterative refinement of linear least squares solutions II. BIT 8, 8–30 (1968)
Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for linear systems with applications to regulariza-

tion. Numer. Algorithm 49, 85–104 (2008)
Carmo, M.P.: Differential Geometry of Curves and Surfaces. China Machine Press, Beijing (2006)
Chen, C.F., Yue, T.X.: A method of DEM construction and related error analysis. Comput. Geosci. 36,

717–725 (2010)
Chen, C.F., Yue, T.X., Li, Y.Y.: A high speed method of SMTS. Comput. Geosci. 41, 64–71 (2012)
Crain, I.K.: Digital representation of topographic surface. Photogramm Eng. Remote Sens 54, 1577 (1970)
Golub, G.H., Van Loan, C.F.: Matrix Computation, Johns Hopkins Series in the Mathematical Sciences,

3rd edn. Johns Hopkins University Press, Baltimore (1989)

123

Author's personal copy



200 Int J Geomath (2013) 4:185–200

Golub, G.H., Van Loan, C.F.: Matrix Computations. Posts & Telecom Press, Beijing (2009)
Goovaerts, P.: Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89, 1–45 (1999)
Hancock, P.A., Hutchinson, M.F.: Spatial interpolation of large climate data sets using bivariate thin plate

smoothing splines. Environ. Model. Softw. 21, 1684–1694 (2006)
Hartkamp, A.D., De Beurs, K., Stein, A., White, J.W.: Interpolation techniques for climate variables. NRG-

GIS Series 99-01, CIMMYT, Mexio (1999)
Henderson, D.W.: Differential Geometry. Prentice-Hall, London (1998)
Joly, D., Brossard, T., Cardot, H., Cavailhes, J., Hilal, M., Wavresky, P.: Temperature interpolation based

on local information: the example of France. Int. J. Climatol. 31, 2141–2153 (2011)
Karniadakis, G.E.M., Kirby, I.I.R.M.: Parallel Scientific Computing in C++ and MPI. Cambridge University

Press, Cambridge (2003)
Kurtzman, D., Kadmon, R.: Mapping of temperature variables in Isreal: a comparison of different interpo-

lation methods. Clim. Res. 13, 33–43 (1999)
Li, Z.L., Zhu, Q.: Digital Elevation Model. Wuhan Technical University of Surveying and Mapping Press,

Wuhan (2000)
Liao, S.B., Li, Z.H.: Some practical problems related to raserization of air temperature. Meteorol. Sci.

Technol. 32, 352–356 (2004) (in Chinese)
Liseikin, V.D.: A Computational Differential Geometry Approach to Grid Generation. Springer, Berlin

(2004)
Naumova, V., Pereverzyev, S.V., Sivananthan, S.: Adaptive parameter choice for one-side finite difference

schemes and its application in diabetes technology. J. Complexity 28, 524–538 (2012)
Ninyerola, M., Pons, X., Roure, J.M.: Objective air temperature mapping for the Iberian Peninsula using

spatial interpolation and GIS. Int. J. Climatol. 27, 1231–1242 (2007)
Reichel, L., Rodriguez, G., Seatzu, S.: Error estimates for large-scale ill-posed problems. Numer. Algorithms

51, 341–361 (2009)
Samanta, S., Pal, D.K., Lohar, D.: Interpolation of climate variables and temperature modeling. Theor.

Appl. Climatol. 107, 35–45 (2012)
Somasundaram, D.: Differential Geometry. Alpha Science International Ltd, Harrow (2005)
Stott, J.P.: Surface Modeling by Computer. Thomas Telford Ltd for the Institution of Civil Engineers,

London (1977)
Su, B.Q., Hu, H.S.: Differential Geometry. People’s Education Press, Beijing (1997). (in Chinese)
Toponogov, V.A.: Differential Geometry of Curves and Surfaces. Birkhaeuser Boston, New York (2006)
Wang, F.: Quantitative Methods and Applications in GIS. CRC Press, Boca Raton (2006)
Wise, S.: GIS data modeling-lessons from the analysis of DTMs. Int. J. Geogr. Inf. Sci. 14, 313–318 (2000)
Yue, T.X.: Surface Modeling: High Accuracy and High Speed Methods. CRC Press, New York (2011)
Yue, T.X., Du, Z.P.: Numerical test for optimum formulation of high accuracy surface modeling. Geo Inf.

Sci. 8, 83–87 (2006) (in Chinese)
Yue, T.X., Wang, S.H.: Adjustment computation of HASM: a high-accuracy and high-speed method. Int.

J. Geogr. Inf. Sci. 24, 1725–1743 (2010)
Yue, T.X., Du, Z.P., Song, D.J., Gong, Y.: A new method of high accuracy surface modeling and its

application to DEM construction. Geomorphology 91, 161–172 (2007)
Yue, T.X., Chen, C.F., Li, B.L.: An adaptive method of high accuracy surface modeling and its application

to simulating elevation surface. Trans. GIS 14, 615–630 (2010a)
Yue, T.X., Song, D.J., Du, Z.P., Wang, W.: High accuracy surface modeling and its application to DEM

generation. Int. J. Remote Sens. 31, 2205–2226 (2010b)

123

Author's personal copy


	An improved version of a high accuracy surface modeling method
	Abstract
	1 Introduction
	2 The basic theory of HASM
	3 Modifications of HASM
	4 Numerical and real-world tests
	4.1 Numerical tests
	4.2 A real word example

	5 Conclusions and discussion
	5.1 Conclusions
	5.2 Discussion

	References


