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ABSTRACT

High accuracy surface modeling (HASM) is a novel surface modeling method.
The well known preconditioned conjugate gradient (PCG) method is used to
solve the equations produced by HASM. In this paper, in order to improve the
convergence rate of PCG, we use two preconditioners: incomplete Cholesky
decomposition conjugate gradient method (ICCG) and symmetric successive
over relaxation-preconditioned conjugate gradient method (SSORCG), which
have not previously been available for use with HASM. Furthermore, we give
adequate storage scheme of the large sparse matrix and optimize the
performance of sparse matrix-vector multiplication. We test the proposed
method on a Dell OP990 machine. Numerical tests show that ICCG has the
fastest convergence rate of HASM. We also find that both ICCG and SSORCG
have much faster convergence rates than some available solvers.

Keywords: Surface Modeling, Preconditioned Conjugate Gradient Method,
Incomplete Cholesky Factorization, Successive Over-Relaxation
Algorithm, HASM

1. INTRODUCTION

As an innovative method, high accuracy surface modeling (HASM) is based on
the fundamental theorem of surface. The fundamental theorem of surface makes
sure that a surface is uniquely defined by the first and the second fundamental
coefficients [1]. HASM method, combined with Gauss-Codazzi equations,
divides the simulated areas in an uniformly orthogonal way and establishes the
corresponding difference equations with finite difference method. We then
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solve this problem under the restriction of the sample data [2]. The whole
calculation process of HASM can be divided into three stages: deriving finite
difference approximations to differential equations, establishing the sampling
points equations and solving the algebra equation. Numerical tests show that the
simulation result of HASM is much better than classical surface modeling
methods [3].

In order to solve the time-consuming calculation problem and the
overabundance of data problem, Yue and others gave the optimum formulation
of HASM [4, 5]. However, several problems need to be settled, such as error
problem and low computational speed. Effective use of this model requires that
the matrix equation produced in HASM be solved efficiently, that is, that a
correct solution is produced using as little computer processing time as
possible. Effective use of the model also requires that the amount of computer
storage be minimized to allow for solution on small computers and to avoid
over-burdening large computers.

The purpose of this paper is to document PCG, a numerical code which uses
the preconditioned conjugate-gradient method to solve the matrix equations
produced by HASM. Two preconditioning strategies are included which have
not previously been available for use with HASM, and which perform better
than some existing PCG algorithm.

2. PRECONDITIONED CONJUGATE GRADIENT METHOD

In this work, selected numerical methods are presented for solving the matrix
equations that arise when the finite difference method is applied. The finite
difference model produces a set of linear equations which can be expressed in
matrix notation as:

Ax = b, (1)

where the coefficient matrix A € R"*" is symmetric and positive definite.
Linear equations such as (1) can be solved using direct or iterative methods.
In most direct methods the matrix A is factored exactly and the true solution is
obtained by one backward and one forward substitution. In most iterative
methods, an initial estimate of the solution is refined iteratively using an
approximately factored matrix. Direct methods are for the small size problem,
but iterative methods are more efficient for large problems and require less
computer storage [6]. The conjugate gradient method (CG) [7] is an iterative
method which can be used to solve matrix equations while its coefficient matrix
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is symmetric and positive definite. CG method has been the subject of
considerable interest in recent years because of its efficiency and ability to solve
difficult problems. Observe that the method of conjugate gradient works well
on matrices that are either well-conditioned or have just a few distinct
eigenvalues. However, the matrix A in HASM is ill-conditioned. Hence we
further introduce the preconditioned conjugate gradient method which have a
fast convergence rate through modifying the condition of A.
Alogrithm 1: Preconditioned Conjugate Gradients [8]:
Given an initial X
k=0,r,=b-Ax,,
while (r, #0)
solve Mz, =r,
k=k+1
Ifk=1
P1=1%
else
Bi=ri iz Iri-ofioa
Pe=2- + Bep
end
04 = i 17 1 [PAD,
Y= X1 0Py
ry=T._— 0 Ap,

k k—

end
X=X,

The major amount of calculation is from the linear system Mz, = r,. The
choice of a good preconditioner can have a dramatic effect upon the rate of
convergence. Next, we will find different matrix M such that Algorithm 1 above
can have high computational speed and the computational cost of Mz, = r, is
low.

2.1. Incomplete Cholesky Preconditioners
The linear system (1) can be converted into the following system:

Ax=b, )

where A = MA, b= Mb. If kz(g) < k,(A) (ky(A) denotes the 2-norm condition
of A), system (2) can have faster computational speed than (1) by using the
same algorithm if a adequate preconditioner is used.
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The incomplete Cholesky preconditioner (ICCG) has been very popular [9].
Suppose the incomplete Cholesky factorization of A is as follows:

A=M+R=LLT +R.

Where L is a lower triangular matrix with the property that M = LL” is close
to A and L has the same sparsity structure with A. However, for the incomplete
Cholesky factorization, A —R = LL". The structure of L can be controlled by the
matrix R. This avoids the complete Cholesky factorization which destroys the
sparsity structure of A. Consider that there exist many zero elements of R and
the nonzero elements value of R are small in actual computation. In this paper,
we consider the non-filled Cholesky factorization of A, that is, the position of L
is zero if the corresponding position of A is zero. The code of this algorithm is
as follows:

Ak, k) = Ak, k)

fori=k+1:n

if A(i, k) #0
A(l, k) =AG, k) | Ak, k)
end
end
forj=k+1:n
fori=j:n
if A, j)=0
A, J) = AG, J) - A, k) A (k, )
end
end
end
end
O max (A)

Since k,(A)= (ky(A)=1) is the 2-norm condition of a matrix A,

Gmin(A)
where, 0, (A) is the largest singular value and o, , (A) is the smallest singular

value of A, matrix M~'A can be modified to close an unit matrix by setting the
element values of R and thus has clustered singular values. In this case, kz(M’lA)
= 1. It is the purpose of precondition which makes kz(M‘lA) << ky(A). In the
actual computation process, to take advantage of the large number of zeros in
matrices A and L, we adopt the block compressed sparse row (BCSR) format
[10]. Mz, = r, in the program can be transformed to LTzk =y, and Ly, =r, and the
computational cost of these is 0(n%) or less.
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2.2. Symmetric Successive Over-Relaxation (SSOR) Preconditioner
The major computational cost of HASM are the sparse matrix-vector
multiplication and the matrix inverse. The computational cost of matrix inverse
is larger than matrix-matrix multiplication. SSOR preconditioning can directly
compute the inverse matrix of M which reduces the computational cost.
Morever, this method only requires the sparse matrix-vector multiplication and
it is easy to parallelize.

In terms of matrix splitting, if A =L + D + LT, where D is diagonal and L is
strictly lower triangular, the SSOR preconditioner is given by [10]:

M = KKT, 3)
| R
where,K=1/\/2—w(—D+L)[—Dj ,0<w< 2.
w w

The inverse of K is as follows:
K'=2-w(/wD)2(I +wD L)1/ wD™,

Denote 1/wD =D,
since (+D 'Ly '=1-D'L+ (D 'L?*-....So

K'=\2=wD">(I-D'L)D"' =J2-wD™"*(I - LD") =K.

Then the approximate inverse matrix of A is M = K K. In this paper, we use
SSOR preconditioner [12] to improve the efficiency of HASM where z, = Mrk
in the PCG algorithm can be changed into y, = I?rk and z, = K Tyk because of the
same sparsity structure between A and K.

3. NUMERICAL TEST

In this section, we employ Gaussian synthetic surface (Figure 1) to validate the
efficiency of PCG for solving HASM. The formulation of Gaussian synthetic
surface is expressed as:

o+ =y

fx, ) =3(1=xp2e0r? —10(§—x3 _ySJe—xz-yz -

The computational area is [-3, 3] X [-3, 3], and —6.5510 < f(x, y) < 8.1062.
The first test is that we fix the sampling interval (m = 4), outer iterative times
(1 times) and inner convergence criteria (” frt— fo , < 10‘6). We change the
grid number of computational area to compare the computational efficiency of
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Figure 1. Gaussian synthetic surface.

PCG for different preconditioned strategies in HASM. Meanwhile, we present
the relationship between the computational time and the grid number for the
ICCG preconditioner and the diagonal preconditioner. In this paper, the diagonal
preconditioner denotes the preconditioner is a diagonal matrix whose diagonal
elements are the diagonal elements of A. The numerical results are showed in
Table 1 and Figure 2. Here, S in Table 1 denotes the diagonal preconditioned
conjugate gradient method (DCG) while T denotes the tridiagonal
preconditioned conjugate gradient method (TCG). From Table 1 and Figure 2,
we can see that the computational time and the inner iterative numbers of ICCG
and SSORCG methods are less than the DCG and TCG methods. The difference
against the computational time of ICCG and DCG has good linear relationship
with the grid numbers, that is, the efficiency of ICCG becomes sharper with the
number of grids increasing. The relationship is as follows:

gn=-2.3729x10%*> +1.5062 x10°¢t +1.5211x 104,

where ¢ is the time difference of the two methods, gn is the grid number.
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Figure 2. The relationship of the time interval and the number of grid between S
and ICCG.

Results show that when we apply the PCG method in HASM, ICCG and
SSORCG methods are more effective both in computational time and iterative
numbers than former preconditioned conjugate gradient methods.

The second test is that we fix the sampling interval (m = 4), number of
grids (101 x 101) and outer iterations (5 times). We compare the convergence
accuracy of the different PCG methods. In the third test we fix the sampling
interval (m = 4), the number of grid (501 x 501) and the inner iterative numbers
(10 times). We then compare the convergence accuracy under different outer
iterative numbers. The test results are shown in Tables 2 and 3. The results show

Table 2. The comparison of simulation accuracy with different inner-iteration numbers.

Inner
iteration ICCG SSORCG S T
5 2.3482 7.4335 6.4740 7.9532
10 0.0395 0.8129 4.7385 1.9689
20 0.000026 0.0145 0.4666 0.0876

50 0 0 0.000513 0.000044
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Table 3. The comparison of simulation accuracy with different outer iteration numbers.

Outer
iteration ICCG SSORCG S T
2 0.001163 0.017035 0.113418 0.094594
4 0.000138 0.002427 0.013710 0.007262
6 0.000064 0.001169 0.006030 0.003271
8 0.000042 0.000821 0.007483 0.002054

that when we apply PCG method in HASM, ICCG method is the fastest
followed by SSORCG method.

From the numerical tests above, we see that we can apply ICCG method and
SSORCG method in HASM, and use the SSORCG method when we propose a
parallel implementation of HASM.

4, CONCLUSIONS

HASM is an important tool for surface modeling. However, the low
computational efficiency of HASM restricts the widely applications of it. In this
paper, considering that the coefficient matrix of HASM is ill-conditioned, we
apply ICCG method and SSORCG method to improve the efficiency of HASM.
In actual computation, we consider the implementation details of the two
methods regards of the computational time and the data storage. We use
Gaussian synthetic surface to validate the methods on DELL OP990 machine.
The results show that ICCG method and SSORCG method are better than other
preconditioned conjugate-gradient methods when they are used in HASM.
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