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a b s t r a c t

Due to the limited availability of land surface temperature (LST) images, thermal-based evapotranspi-
ration (ET) models can only provide instantaneous ET snapshots. In contrast, models that are based on
near surface soil moisture (SM) and leaf area index (LAI) can operate at daily scales. However, their
transpiration schemes need to be more physically realistic and their model parameters usually need to
be calibrated by flux measurements. In this study, we incorporated a biophysical canopy conductance
(Gc) model into a two source energy balance (TSEB) scheme to replace the original Priestly–Taylor (PT)
approximation and then optimized both models (Gc-TSEB and PT-TSEB) at pixel scales using qualified
MODIS LST data. The results show that using LST is almost as effective in the calibration as using flux
measurements. This is promising because unlike flux measurements, LST can be acquired at various spa-
tial resolutions by remote sensing, which makes model calibration feasible for any land pixel. In addition,
ET and its partitioning between the canopy and soil layers were found to be reasonable at both validation
sites. The day to day and diurnal variations of the predicted ET generally matched the trends and peaks
of the flux measurements, although systematic biases were also found due to the decoupling effect of
soil moisture at different depths. Furthermore, both models are robust with ±50% changes of SM or LAI
because the parameters were automatically adjusted by the LST-calibration. The models are sensitive to
LST. However, if the added noise of the LST is less significant than N(±1, 2.52), the medians of the RMSEs
in the LE predictions from the LST-calibrated models were quite similar to those from the flux-calibrated
models. Both models were found to be accurate, but Gc-TSEB provides slightly more precise and robust
predictions than PT-TSEB.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Evapotranspiration (ET), which includes evaporation and plant
transpiration, is a crucial hydro-meteorological component that
influences water availability and energy partitioning at the land
surface. More than 60% of the land surface precipitation and over
half of the solar radiation that are absorbed by the land surface
are consumed by ET on annual time scales (Oki and Kanae, 2006;
Trenberth et al., 2009, 2007). Quantifying the spatial variability of
ET is important for increasing our understanding of the hydrological

∗ Corresponding author. Tel.: +86 01064888991.
E-mail addresses: ganguojing10@gmail.com (G. Gan), gaoyanc@igsnrr.ac.cn

(Y. Gao).

cycle, ecology system, and water resource management (McCabe
and Wood, 2006).

Remote sensing has long been recognized as the most feasible
way to estimate land surface ET (usually expressed as its accom-
panying energy flux, the latent heat flux, which is denoted as LE)
over regional and global scales (Kustas and Norman, 1999; Mu et al.,
2011). Diagnostic ET models mainly use remotely sensed land sur-
face temperature (LST), near surface soil moisture or leaf area index
(LAI) as key boundary conditions to determine LE through surface
energy balance equations.

One such diagnostic model that uses LST, the two source energy
balance model (TSEBTR) that was developed by Norman et al.
(1995), has been widely applied to various landscapes (Colaizzi
et al., 2012; French et al., 2005) and has been shown to be superior
to other thermal-based models (Gao and Long, 2008; Timmermans
et al., 2007). Transpiration is estimated in TSEBTR through the
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Priestly–Taylor (PT) approach (Priestley and Taylor, 1972) with the
coefficient (˛PT), which is initially set to 1.26 and can be adjusted
if the calculated soil evaporation is unrealistic. In addition, stud-
ies that incorporate canopy conductance (Gc) models into TSEB
schemes have found that Gc models are useful in modeling instan-
taneous transpiration under various atmospheric and soil moisture
conditions if LST is used as a key constraint (Anderson et al., 2008,
2000; Zhan and Kustas, 2001).

TSEBTR does not require calibration, but the extrapolation of
instantaneous LE from TSEBTR to continuous daily series is still not
well understood, especially under cloudy conditions. To address
this problem, Kustas et al. (2001, 1998, 1999) replaced LST with
microwave-derived near surface (0 ∼ 5 cm) soil moisture as a
key boundary condition within the TSEB framework (denoted as
TSEBSM) to estimate daily ET. Soil evaporation is constrained by
the near surface soil moisture through two soil texture-dependent
coefficients (Sellers et al., 1992). Although the model performance
was found to be sensitive to these two coefficients (Li et al., 2006),
no study has provided corresponding values of these coefficients
for each type of soil texture. In addition, TSEBSM cannot easily
adjust ˛PT (Kustas et al., 2003) to accommodate a range of envi-
ronmental conditions because LST is not included in the model.
Modeling transpiration in a more physically realistic way and cali-
brating the model parameters are necessary before TSEBSM can be
widely applied.

In addition to utilizing LST and soil moisture, many studies
have also integrated the remotely sensed LAI into the Gc-based
Penman–Monteith (PM) approach (Monteith, 1965; Penman, 1948)
to estimate daily ET (Cleugh et al., 2007; Mu et al., 2007). Gc-PM
models are usually calibrated at pixel scales by eddy covariance (EC)
flux measurements (Leuning et al., 2008) or at catchment scales by
runoff measurements (Zhang et al., 2008, 2010). In addition, Yan
et al. (2012) used a soil water balance sub-model to scale potential
ET from a Gc-PM model to actual ET and thus avoided the need for
site-specific parameter calibration.

Calibrating ET models that are based on soil moisture or LAI at
pixel scales without in-situ measurements is of great practical sig-
nificance. Several studies have successfully used ET estimated by
thermal-based models to calibrate daily-scale models (Liu, 2012;
Long and Singh, 2010). However, it is more intriguing to calibrate
model parameters at pixel scales using remotely sensed LST with-
out introducing additional errors other than the uncertainty of the
LST itself.

In this study, we incorporated the Gc model that was developed
by Leuning et al. (2008) into TSEBSM to replace the original PT for-
mulation and evaluated the strength of using the quality-controlled
MODIS LST in optimizing resistance networks of the TSEB model
(including the Gc version, Gc-TSEB, and the PT version, PT-TSEB).
Because LST is an important indicator of the energy balance and
thermal state of the land surface, the models are expected to give
reasonable energy fluxes when they predict the best LST with the
optimized parameters. The calibrated models were used to cal-
culate energy fluxes at a half hourly resolution without remotely
sensed LST data. EC flux measurements and predictions from mod-
els that were calibrated by flux data were used as references to
evaluate the LST-calibrated models at half hour and daytime scales.
We also performed sensitivity analyses to test the robustness of
both models with ±50% changes of LAI or near surface soil moisture
as well as a series of assumed uncertainties of the LST itself.

2. Resistance networks of the models

A resistance network links the instantaneous surface state (LST
and soil moisture) to the energy fluxes. In this section, we provide
a detailed description of the models’ resistance networks (Fig. 1),

Fig. 1. Resistance network of the model.

in which most of the components are adopted from the original
TSEB model (Kustas et al., 1998; Norman et al., 1995), and some are
updated by recent studies from the literature.

The term ra (zh) represents the aerodynamic resistance, which
is estimated from the wind speed and surface roughness (Li et al.,
2005). The canopy conductance (Gc) is modeled as a function of the
LAI, water vapor deficit (Da), and visible radiation (Qh) (Leuning
et al., 2008).

Gc = gsx

kQ
ln

[
Qh + Q50

Qh exp(−kQLAI) + Q50
][

1
1 + Da/D50

]
(1)

where gsx is the maximum stomatal conductance, kQ is the extinc-
tion coefficient for shortwave radiation, Q50 and D50 are the visible
radiation and the humidity deficit, respectively, when the stoma-
tal conductance is half of its maximum. gsx, kQ, Q50, and D50 are
the parameters to be calibrated. The canopy resistance (rc) is the
reciprocal of the canopy conductance.

rc = 1
Gc

(2)

The leaf boundary layer resistance (rb) represents the resistance
exerted by leaves on the canopy heat fluxes and is formulated as in
the Community Land Model (Oleson et al., 2010).

rb = 20√
u∗

(3)

where u* is the friction velocity, which represents the surface shear
stress. L and S (Fig. 1) are the LAI and stem area index, respectively.

The resistance to sensible and latent heat fluxes between the soil
surface and the canopy displacement height (under-canopy resis-
tance, rs) is formulated as in the Community Land Model (Zeng et al.,
2005) instead of the original formulation in TSEB.

rs = 1
(csu∗)

(4)

where cs is the turbulent transfer coefficient, which is obtained by
the interpolation between the values for the bare soil and dense
canopy (Zeng et al., 2005).

cs = cs,barews + cs, dense(1 − ws) (5)

cs,bare = k

a

( z0m,g u∗
�

)−0.45
(6)

where z0m,g is the ground momentum roughness length, which is
taken as 0.01 m; � = 1.5 ×10−5 m2 s−1 is the kinematic viscosity of
air, a = 0.13, and cs, dense is taken as 0.004 (Zeng et al., 2005).
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The formulation of the empirical interpolation weight, ws, must
satisfy the criteria that cs approaches cs, bare when there is no vege-
tation and approaches cs, dense when the vegetation is dense. ws was
empirically defined as e−(L+S) in Zeng et al. (2005) and accounts for
the impacts of the leaf and stem areas of the canopy on cs. Note that
u* only represents the shear stress on the canopy top, so the canopy
height should be included in the formulation of cs. We formulated
the interpolation weight as e−L−˝hc to account for the effects of both
LAI and canopy height on cs. The stem area index is related to the
canopy height, so its impact is included in �, which is a parameter
to be calibrated.

The original TSEB model calculates rs according to the attenuat-
ing effects of vegetation on wind speed (us, typically at 0.05–0.2 m)
inside the canopy (Eq. (7)). Norman et al. (1995) suggested that as
the vegetation becomes sparse, the calculation of us through expo-
nential wind profile should be modified to be larger; however, it is
unclear when and how to adjust us when the vegetation fraction
tends to be 0. As a result, although no study (to our knowledge)
has shown that the formulation of Zeng et al. (2005) is more accu-
rate than that of Eq. (7), we use it because they provide convergent
rs estimates as the vegetation cover varies from 1 to 0. Such con-
sistency is important because our study period covers all of the
growing stages of the corn at the crop site, and the grass at the
grass site remains approximately only 0.05 m high for most of the
period.

rs = 1
a + bus

(7)

The surface soil resistance (rss) to latent heat transfer is esti-
mated by an exponential function of the near surface soil moisture
(Sellers et al., 1992).

rss = exp
(

a0 − a1
w

wsat

)
(8)

where w is the near surface soil moisture content (volumetric
content) and wsat is the saturated soil moisture content. The coef-
ficients a0 and a1, which were taken as 8.2 and 4.3, respectively,
in previous studies (Kustas et al., 1998; Sellers et al., 1992), will be
calibrated in this study.

The soil heat flux (G) is estimated as a constant part of the net
radiation of the soil layer (Rns). The unknown ratio ˛G represents
the ability of the soil to conduct heat flow and requires calibration.

G = ˛GRns (9)

3. Calculation and calibration procedures

The models are based on the surface energy balance between
the net radiation and heat fluxes. To determine the net radiation,
we need to know LST. The net radiation is partitioned between the
canopy and soil layers. The LST components and heat fluxes in both
layers can be uniquely determined through energy balance equa-
tions. In this way, the LST and net radiation are coupled; once they
are solved by iteration, the heat fluxes are simultaneously deter-
mined.

The step by step calculation procedures (Fig. 2) are explained
below. All of the resistance terms are described in Section 2. Sub-
scripts c and s indicate the canopy and soil layers, respectively.

1) Initiate the LST as air temperature (Ta).
2) Compute the net radiation (Rn) of the land surface and determine

its partitioning between the canopy and soil layers.

Rn = (1 − ˛)Rs ↓ +�sRl ↓ −�s�LST4 (10)

where Rs↓and Rl↓are the incoming short wave and long wave
radiation, respectively. ˛ and �s are the land surface albedo and

Fig. 2. Flow chart of the calculation procedure.

emissivity, respectively, and � is the Stefan–Bolzmann constant
(5.67 × 10−8 Wm−2 K−4).

The net radiation is partitioned through an exponential func-
tion (Anderson et al., 1997) of the LAI, solar zenith angle (�s) and
extinction coefficient (�) (Norman et al., 2000).

Rnc = Rn
{

1 − exp[−�LAI/
√

2 cos(�s)]
}

(11)

Rns = Rn exp[−�LAI/
√

2 cos(�s)] (12)

3) Compute the component temperatures by solving the cor-
responding energy balance equations. The net radiation is
balanced by the sensible and latent heat fluxes in the canopy
layer.

Hc + LEc = Rnc (13)

Hc = �cp
Tc − Ta

ra + rb/(L + S)
(14)

LEc = �cp

	

es(Tc) − ea

ra + rc
(15)

LEc = ˛PT




 + 	
Rnc (16)

where � is the air density (1.25 kg/m3), cp is the specific heat of air
(1005 J/kg/K) at a constant pressure, 	 is the psychrometric con-
stant (0.667 hpa/K), � is the slope of the saturated vapor pressure
to the air temperature, and es(Tc) is the saturated vapor pressure at
temperature Tc.

A nonlinear equation with only one unknown variable (Tc)
can be derived from Eqs. (13), (14), and (15) for Gc-TSEB. The
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equation can be solved using the Newton–Raphson iteration
approach. The existence and uniqueness of the solution are guar-
anteed by the monotonically increasing property of the function
F(Tc) = Hc + LEc − Rnc. Similarly, Tc can be derived from Eqs. (13),
(14), and (16) for PT-TSEB.

For the soil layer, the net radiation is partitioned between the
sensible heat flux, latent heat flux, and soil heat flux. Similarly,
a unique solution for the soil temperature can also be achieved
through Newton–Raphson iteration using Eqs. (9) and (17)–(20).

Hs + LEs+G = Rns (17)

Hs = �cp
Ts − Ta

ra + rs
(18)

LEs = �cp

	

hres(Ts) − ea

ra + rs + rss
(19)

where hr is the relative humidity of the air adjacent to the soil
water (Camillo and Gurney, 1986), and es(Ts) is the saturated vapor
pressure at temperature Ts.

4) Determine the new LST (denoted as LSTnew) as the composite of
Tc and Ts in step 3 using the vegetated fraction as the interpola-
tion weight (Norman et al., 1995).

LSTnew =
[
fcTc

4 + (1 − fc)Ts
4
]1/4

(20)

fc = 1 − exp(−0.5LAI) (21)

5) Set LST as (LST + LSTnew)/2 if | LSTnew − LST| is larger than the
given threshold (taken as 0.1 K in this study) and then repeat step
2; otherwise, the iteration procedure ends. When the iteration
ends, the LST and energy fluxes are those from steps 4 and 3,
respectively.

We use the quality-controlled MODIS LST as LSTact to calibrate
the model parameters. The penalty function is defined as the root
mean square error (RMSE) of the modeled LST. The simulated
annealing technique (Dekkers and Aarts, 1991; Kirkpatrick et al.,
1983) is used to search for the optimized set of parameters in the
parameter space to minimize the penalty function. The simulated
annealing technique can achieve global optima by the so called hill-
climbing moves to avoid being trapped in local minima. Models that
are calibrated by flux measurements are also used as references to
evaluate the performances of the models that are calibrated by the
LST. In the flux calibration mode, the penalty function is defined as
the sum of the RMSEs of the modeled H and LE.

The ranges for the parameters are set as follows: ˛PT: 0.5–2, gsx:
0.002–0.15 m/s, Q50: 20–50 W/m2, D50: 0.7–1.5 kPa, kQ: 0.3–1.0, a0:
5–15, a1: 0–15, �: −10 to 2, ˛G: 0.15–0.35. At the same time, on
average, the maximum values of gsx, together with Q50, D50, and
kQ, must result in a corresponding ˛PT value of not larger than
2. To avoid over-tuning the parameters, we further constrain �
under the principle that, on average, the effect of � (|�*hc|) will
not exceed that of the LAI in the formulation of rs.

4. Study site description and data preprocessing

To run the models and evaluate their performances, we
downloaded the in-situ measurement data of the TongYu sta-
tion from the Coordinated Energy and Water Cycle Observations
Project (CEOP) reference site data archive (http://www.ceop.net/)
and the MODIS products from the Goddard Space Flight Center
(http://ladsweb.nascom.nasa.gov/data/). The data that were used
in this study are summarized in Table 1. In this section, we briefly
describe the TongYu station, the processing of the flux data, and the
construction of the calibration and validation datasets.

TongYu station, which contains two identical observation sys-
tems at a crop site (44.5921◦N, 122.8773◦E) and a grass site
(44.5672◦N, 122.9298◦E), is located on the SongNen plain, which
is one of the most important areas of grain production in China.
The annual mean air temperature at TongYu station is 5.2 ◦C, and
the annual mean precipitation is 404.3 mm. Corn is planted at the
crop site and reaches its maximum height (∼1.8 m) in September.
Short grass grows at the grass site and remains less than 0.1 m high
for the entire year (Tu, 2007). The different land covers at Tongyu
station provide good opportunities to evaluate the models.

All of the in-situ measurements were recorded at an interval
of 30 min and represent either instantaneous measurements or
30-min averages prior to the recorded observation time (Table 1).
The EC systems measured fluxes at the spatial scale of the MODIS
LST (approximately 0.01◦) because the station is surrounded by
homogeneous flat terrain and is not sheltered by tall obstacles.
Closure corrections must be performed on the sensible and latent
heat fluxes from the EC systems before the flux measurements
can be used. In addition, to work with satellite products, the flux
measurements should be interpolated to instantaneous values. We
partitioned the instantaneous available energy during the satellite
passage between the sensible and latent heat fluxes based on the
30-min average evaporative fraction that was measured by the EC
system (Twine et al., 2000).

Soil heat flux measurements below the surface are not compara-
ble to the model-predicted surface values. We used the calorimetric
method (Heusinkveld et al., 2004) to estimate the soil heat flux at
the surface by combining the heat storage in the top 0.05 m soil
layer and the soil heat flux at 0.05 m below the surface. The near sur-
face soil moisture was derived from in-situ measurements instead
of microwave retrievals because microwave measurements pro-
vide soil moisture estimates at a coarser temporal resolution (polar
satellite passes near noon every day) than the 30-min scale that was
used in this study. In addition, the rationality of estimating the near
surface soil moisture at pixel scales using point measurements will
be discussed in Section 5.2.

For each site, we first construct a data set for model calibration.
We cover a time period from DOY 180 to DOY 270 in 2003 and
2004 during which the corn fields were in the growing period. The
calibration data are taken from the time when the highest quality
MOD11L2/MYD11L2 LST data are available. The calibration data set
includes remotely sensed products, atmospheric forcing, soil mois-
ture, and energy flux measurements at these timings. Second, the
validation data set includes the same type of inputs except for LST
but covers different timings. The model inputs at a 30-min scale
from 8:30 to 17:30 (local time) during the entire study period are
used for the model evaluation.

5. Results and discussion

5.1. Model calibration and validation

Overall, using LST is almost as effective as using the flux mea-
surements in calibrating the model parameters (see Table 2).
The Gc-TSEB model-estimated H and LE had similar accuracies
compared with the observations using both calibration modes
(Table 3, Fig. 3), whereas the LST-calibrated PT-TSEB (denoted as PT-
TSEBLST) had slightly higher discrepancies with the observed fluxes
compared to the PT-TSEB that was calibrated using the flux mea-
surements (Table 3). In contrast, the PT-TSEB without calibration
significantly overestimated the observed LE.

The PT-TSEB model algorithm in this study used a different
resistance network formulation from the original TSEBSM model
developed by Kustas et al. (1998). Therefore, the significant over-
estimation in LE in applying the non-calibrated PT-TSEB model is

http://www.ceop.net/
http://ladsweb.nascom.nasa.gov/data/
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Table 1
Summary of the data used in this study.

Data Measurements Height Inst/Avera Usage

Forcings Incoming radiation 3 m Inst Rs↓,Rl↓
Air temperature 3.95 m Inst Ta

Specific humidity 3.95 m Inst Estimate ea

Air pressure 1.5 m Aver Pa

Wind speed 17.06 m Aver u

Subsurface
measurements

Soil temperature −0.02 m Inst Estimate G
Soil moisture −0.05 m Inst w

Flux measurements Sensible heat fluxes 3.5 mb Aver H
latent heat fluxes 3.5 mb Aver LE
Soil heat flux −0.05 m Aver Estimate G

MODIS products MOD11L2/MYD11L2 ---- Inst LST
MOD15A2 ---- Inst LAI
MCD43B3 ---- Inst albedo

a Inst stands for instantaneous. Aver stands for average.
b The measurement height for H and LE at the grass site was 2.0 m.

Table 2
Parameters calibrated by LST or EC measurements at the crop site and the grass site, respectively.

Gc-TSEB gsx Q50 D50 kQ a0 a1 � ˛G

(m/s) (W/m2) (kPa)

Crop, LST 0.013 29.9 0.95 0.50 15.0 12.4 0.68 0.20
Crop, H + LE 0.013 21.7 0.94 0.69 12.0 8.3 0.27 0.30

Grass, LST 0.044 20.3 0.71 0.31 13.4 9.2 −6.38 0.35
Grass, H + LE 0.022 27.9 0.77 0.72 7.3 0.7 −3.54 0.35

PT-TSEB ˛PT a0 a1 � ˛G

Crop, LST 1.027 14.4 11.7 0.58 0.15
Crop, H + LE 1.079 15.0 11.5 1.01 0.19

Grass, LST 1.210 11.9 7.5 −7.47 0.34
Grass, H + LE 1.137 7.5 0.6 −4.96 0.35

Table 3
RMSEs and biases of the model predictions during the validation period at the crop site and the grass site.

LST(K)a Rn(W/m2) H(W/m2) LE(W/m2) G(W/m2)

RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS

Gc-TSEB
Crop, LST 2.71 0.13 30 20.8 44.8 11.4 67.8 1.4 26.5 8.0
Crop, H + LE 3.89 −2.65 39.6 31.1 41.7 −0.6 68.9 6.4 40.5 25.3

Grass, LST 3 0.39 27.3 18.6 39.1 −0.9 57.3 −5.8 34.6 25.4
Grass, H + LE 3.34 −0.03 30.8 21.3 37.5 −1.2 56.5 −2.8 35.4 25.3

PT-TSEB
Crop, LST 2.69 −0.28 30 20.9 44.6 26.3 54.3 −6.7 23.4 1.24
Crop, H + LE 4.4 2.97 23.2 8.8 39.4 16.1 54.3 −13.6 25.5 6.3
Crop, NCb 50.1 40.9 84.7 -61.1 108.6 75 42.1 27.0

Grass, LST 3 0.21 48.2 40.2 52.1 22.5 61.1 −8.6 37.5 26.3
Grass, H + LE 3.3 0.19 32.6 24.2 36.7 12.3 51.3 −11.8 35.3 23.7
Grass, NC 47.5 39.5 63.4 -27.1 93.9 49.3 29.8 17.3

a LST was evaluated during the calibration period.
b NC stands for no calibration.

not indicative of the results that would have been obtained using
the original TSEBSM model formulation. In addition, because the
LEc that was estimated with ˛PT taken as 1.26 resulted in rela-
tively small differences from the flux-calibrated PT-TSEB (averages
of ∼20 W/m2 and 10 W/m2 at the crop and grass sites, respectively),
the 1.26 initial value for ˛PT was a reasonable value to adopt. In con-
trast, the overestimation in LEs from applying the non-calibrated
PT-TSEB exceeded 50 W/m2 at both sites compared with the PT-
TSEB that was calibrated using the flux measurements, suggesting
that the soil evaporation had been overestimated.

In contrast, the LE components from the LST-calibrated models
were generally found to be highly correlated with their counter-
parts from the flux-calibrated models, and a maximum average

trade-off of only 23 W/m2 between LEc and LEs was found when
Gc-TSEB was applied at the grass site (Table 4). The LST calibration
mode ended up with a reasonable LEc/LEs partitioning, which is not
surprising. During the calibration period, if LE is completely taken
up by LEs (LEc) when fc is small, then the estimation of LST will
be positively (negatively) biased when fc is large because the tran-
spiration will be too small (large). It is therefore expected that the
LST calibration mode will work well if the calibration period cov-
ers the full range of fc. This is promising because the partitioning
of ET into evaporation and transpiration is important for assessing
biomass production and the allocation of increasingly scarce water
resources (Kool et al., 2014). As a comparison, the original TSEBTR
and TSEBSM cannot adjust ˛PT down unless the LEs = 0 threshold is
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Fig. 3. Gc-TSEB predicted fluxes versus EC measurements during the validation period. Panels a and b show the model performances in predicting the fluxes when the model
was calibrated by MODIS LST and EC measurements, respectively, at the crop site. Panels c and d show the model performances in predicting the fluxes when the model was
calibrated by MODIS LST and EC measurements, respectively, at the grass site.

reached (Anderson et al., 2008), which usually results in overesti-
mates of LEc.

It should be noted that other factor in addition to the model
parameters may cause errors in the LEc and LEs estimations in both
models. For example, biases in the albedo may cause biases in Rn

(Table 3), and the partitioning of Rn between the canopy and soil
layers did not consider the difference between the divergences of
the short and long wave radiations, which may cause biases in the
LEc and LEs estimations.

The potential for using LST to solve the bulk surface resistance
directly from energy balance equations (Boegh et al., 2002) or to
optimize the resistance parameters in TSEBSM has long been recog-
nized. For example, Li et al. (2006) optimized a0 and a1 to reduce

Table 4
LE partitioning between the canopy and soil layers.

LEc LEs

Min Max Mean ra Min Max Mean r

Crop
GcLST 2.5 357.6 124.9 0.99 0.01 162.6 28.9 0.98
Gcflux 3.1 357.7 127.9 −0.05 146.7 30.9
PTLST 0.9 341.2 116.1 0.99 0.01 171.6 30.8 0.99
PTflux 0.8 353.3 117.2 0.01 143.8 22.6

Grass
GcLST 1.5 370.7 125.9 0.99 −0.4 212.3 17.7 0.45
Gcflux 3.3 317.6 103.9 −24.6 115.3 40.0
PTLST −0.3 370 113.1 0.99 −1.2 371.2 20.2 0.41
PTflux −0.1 336.8 102.5 −19 82.8 27.6

a r stands for the correlation coefficient between the predictions from models that
were calibrated using the LST and fluxes.

the LST and H biases and found that factors other than a0 and a1
may be responsible for the model-measurement discrepancies. As a
result, although different datasets and model structures were used,
the successful use of remotely sensed LST for the calibration in
this study indicated that it may be appropriate for the resistance
parameters that are related to both the canopy and soil layers to be
adjusted together to account for the bias of the predicted LST.

For example, the calibrated ratio ˛G in this study resulted in
well-constrained RMSEs and biases of G for both models, especially
at the crop site. In addition, at the crop site (hc ≈ 1.5 m), because of
the larger � from calibration, the under-canopy resistance would
also be larger than that at the grass site (hc ≈ 0.05 m) under the
same LAI and canopy top sheer stress conditions, which repre-
sents the effect of increasing plant height on rs (Eqs. (4) and (5)).
The automatic adjustments of � at the two sites indicated that
our modification of the interpolation weight (ws) of the turbulent
transfer coefficient is reasonable and that the calibration procedure
provides insights into the heat transfer process rather than just tun-
ing the parameters to fit the observation data, although we do not
define a unique set of parameters for natural land covers.

As mentioned in Section 2, it is important to treat rs in a con-
sistent way for vegetated surfaces with vegetation covers ranging
from 1 to 0. For example, Sanchez et al. (2008) modified the original
TSEBTR model into a “patch” version such that the wind profile in
the air space is not related to the vegetation cover or canopy height.
This patch version of the TSEB is quite different from the parallel
formulation used in this study in both the resistance network and
energy flux computation, but future work will test its usefulness
of incorporating the canopy conductance in clumped vegetation
situations.
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Fig. 4. RMSEs and biases of the energy flux predictions from Gc-TSEB with ±50% changes of LAI or near surface soil moisture during the validation period. a1–a4 and b1–b4
show the model performances with fixed parameters at the crop site and the grass site, respectively; c1–c4 and d1–d4 show the model performances with the recalibrated
parameters at the crop site and the grass site, respectively.

5.2. Sensitivity analysis of model performances

In this section, we will analyze the models’ sensitivities to the
LAI, near surface soil moisture and LST because the construction and
calibration of the models’ resistance networks are mainly based on
these three variables.

During the study period, the LAI at the crop (grass) site ranged
from 0.4 (0.3) to 2.8 (1.6) with a mean of 1.11 (0.68), and the near
surface soil moisture (volumetric content) ranged from 13.4% (8.8%)
to 36.7% (42.8%) with a mean of 22% (15.2%). We set the changes of
these two variables to range from −50% to 50% at an interval of 10%.
Two different sensitivity analyses are provided for the LAI and soil
moisture. First, we ran the model with the changed values of LAI or
near surface soil moisture with a fixed set of parameters that were
calibrated by the LST with the original input data. In the second
way, we calibrated the model parameters against LST every time
the LAI or near surface soil moisture was changed. The recalibrated
models were then used to calculate the energy fluxes.

Both models are sensitive to the LAI and near surface soil mois-
ture. At both sites, the LAI and near surface soil moisture had
positive impacts on LE when the models were run with the fixed
parameters, and the magnitude of the impacts can be greater than
80 W/m2 and 60 W/m2 at the crop and grass sites, respectively
(Figs. 4 and 5. a3 and a4 and b3 and b4). The RMSE curves of H
and LE both had concave shapes and generally increased with the
amplitude of the input variation (Figs. 4 and 5. a1 and a2 and b1 and
b2). The sensitivity analysis indicates that both models are able to
reflect the LE variations under heterogeneous LAI and soil moisture
conditions.

For the recalibrated Gc-TSEB, no obvious trend of H and LE biases
(except for the bias of H at the grass site with changing LAI) was
observed with the change of LAI or near surface soil moisture, and
the RMSEs of all of the flux predictions from Gc-TSEB remained
nearly constant (Fig. 4. c1–c4 and d1–d4). In addition, at both sites,
the absolute values of the biases of H and LE were always smaller
than the corresponding Rn biases (nearly constant at ∼20 W/m2),
except that the bias of H at the crop site (30.5 W/m2) was slightly
larger than the Rn bias (21.2 W/m2) when the near surface soil mois-
ture was decreased by 50%. This indicates that the uncertainties of
the predictions could be constrained when the Gc-TSEB model was
recalibrated with the changed inputs.

Compared with Gc-TSEB, PT-TSEB showed less robustness at the
crop site; the RMSEs and biases were not well constrained with
varying LAI (Fig. 5). However, both models were found to be quite
robust by the recalibration sensitivity tests. In the recalibration
cases, Gc-TSEB also showed robustness in partitioning LE into LEc

and LEs at both sites (Fig. 6), and PT-TSEB showed similar robust-
ness at the grass site. Although it was less robust than Gc-TSEB at
the crop site, especially when the LAI was decreased by 30% and
when the soil moisture content was decreased by 40%, PT-TSEB
performed quite well with changes of ±20% in both inputs.

The sensitivity tests presented above indicated that the mod-
els would perform reasonably well even with flawed input data if
only the error of the model-predicted LST is minimized. The resis-
tance network would automatically adapt to the change in the input
data. The maximum stomatal conductance or ˛PT would increase
to compensate for the effect of the decreased LAI on the canopy
conductance and vice versa. Similarly, when the near surface soil
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Fig. 5. RMSEs and biases of the energy flux predictions from PT-TSEB with ±50% change of LAI or near surface soil moisture during the validation period. a1–a4 and b1–b4
show the model performances with fixed parameters at the crop site and the grass site, respectively; c1–c4 and d1–d4 show the model performances with the recalibrated
parameters at the crop site and the grass site, respectively.

Fig. 6. LE partitioning from both models with ±50% changes of LAI or near surface soil moisture during the validation period.

moisture was decreased, the resistance of the surface soil to water
vapor would also decrease by reducing the difference between the
two coefficients of rss; that is, a0–a1 and vice versa.

The robustness of the two models, especially Gc-TSEB, is of great
practical use because the model inputs, especially the near sur-
face soil moisture, may be biased systematically by measurement
errors and scale effects. Although the near surface soil moisture is
highly variable in both space and time, its spatial patterns tend to

persist over time, which is known as the temporal stability
(Vachaud et al., 1985). As a result, soil moisture contents from
in-situ measurements, passive microwave remote sensing, or soil
moisture balance models (Yan et al., 2012) are often highly cor-
related with those at MODIS scales, in which case the model
performances are guaranteed by the robustness of both models.

Because the model robustness depends on the accuracy of the
LST, the impacts of LST errors on the model performances were also
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Fig. 7. Box plots of RMSEs and biases in the LE predictions from Gc-TSEB at the crop site (A, C) and at the grass site (B, D). Each box ranges from the lower quartile (25th) to
the upper quartile (75th). The median is represented by the middle line in the box. The plus signs represent the points beyond the whiskers.

analyzed. We progressively added increasing amounts of noises
that followed the Gaussian distribution N(�, �2), where � = 2.5 K,
and � = 0, ±0.5, ±1, ±1.5, ±2, and ±2.5 K, to the original LST signal
and then re-calibrated the models with the original inputs. For each
pair of (�, �), we calibrated and ran models ten times; each time
used a new set of LST signals.

Overall, the models are quite sensitive to the mean biases of
the LST. Box plots of the LE prediction performance (Figs. 7 and 8)
show that the medians of both the RMSEs and the absolute val-
ues of the biases in LE increased with |�|. Each box could cover a
wide range even when |�| was small because the noise we added
to the LST signal was random, which means that even with � = 0,
there is still a chance that the mean of the added noise is much
larger or smaller than 0. If the LST is systematically biased, it is no
longer as effective as the flux measurements in calibrating models
(compared to Table 3). However, LST calibration is still valuable for
improving the model performance. We found that both models that
were calibrated by the noise-affected LST performed better than the
non-calibrated PT-TSEB; they usually had smaller RMSEs and abso-
lute values of the biases even when the mean bias of the LST reached
±2.5 K with a standard deviation of 2.5 K (Table 3 and Figs. 7 and 8).
In addition, when |�| was less than 1 K, the medians of the RMSEs
from both models, especially from Gc-TSEB, were similar to those
from the models that were calibrated by flux measurements.

Independent evaluations of the Version 5 MODIS LST at more
than 40 sites, including lake, snow, urban, crop, grass, and for-
est sites, showed that under clear-sky conditions, the means and
standard deviations (STDs) of the LST errors are usually within
1 K (within 2 K in all cases) (Coll et al., 2009; Wan and Li, 2008;
Wan, 2014). However, large LST errors (mean bias = −2.79 K and

STD = 2.52 K) at bare soil sites in arid regions have also been
reported (Li et al., 2014). Therefore, caution should be taken if the
calibration dataset mainly consists of data from low vegetation
periods.

5.3. Evaluations of day-to-day and diurnal flux predictions

LE at daytime scales and its diurnal variations are useful in many
water related applications, such as irrigation scheduling and water-
shed water resource managements. We aggregated LE predictions
from the LST-calibrated Gc-TSEB and PT-TSEB models to daytime
scales. Overall, the daytime predictions matched the trends of the
EC measurements well and greatly outperformed those from the
non-calibrated PT-TSEB model at both sites (Fig. 9). Although pre-
cipitation was not incorporated directly in the Gc-TSEB and PT-TSEB
models, both models’ LE predictions showed clear trends and peaks
that were usually related to precipitation events.

In contrast, although the PM-Mu model demands fewer inputs
(wind speed, soil moisture) and is easier to use (no iteration
procedures are needed), using it with the default biome-specific
parameters from Mu et al.’s paper (2011) performed not as well
as the LST-calibrated Gc-TSEB and PT-TSEB models (Table 5) and
was unable to simulate the LE trends at both sites on a day-to-day
basis (Fig. 9). Note that this comparison is not intended to deny
the rationality or the applicability of the PM-Mu model at global
scales. In addition, like TSEB schemes, Gc-PM models have the abil-
ity to incorporate surface soil moisture data to implicitly reflect the
controlling effect of precipitation on LE (Sun et al., 2013). However,
unlike Gc-TSEB and PT-TSEB, it is difficult to link LST to Gc-PM mod-
els because the PM equation results from the elimination of LST in
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Fig. 8. Box plots of RMSEs and biases in the LE predictions from PT-TSEB at the crop site (A, C) and at the grass site (B, D). Each box ranges from the lower quartile (25th) to
the upper quartile (75th). The median is represented by the middle line in the box. The plus signs represent the points beyond the whiskers.

Fig. 9. Daytime LE predictions from the Gc-TSEB, PT-TSEB, PM-Mu, and non-calibrated PT-TSEB (PT-TSEB-NC) models.

the surface energy balance equation (Zhan and Kustas, 2001). As a
result, the reliance on in-situ measurements in pixel-wise calibra-
tions may be an obstacle to Gc-PM type models, especially when
the models are applied to mixed pixels.

However, it should be noted that despite providing overall good
performance, Gc-TSEB and PT-TSEB models that are calibrated by

LST may produce systematically biased predictions due to the
decoupling effect of soil moisture at different depths (Capehart
and Carlson, 1997) and the fact that the soil surface energy bal-
ance is more strongly coupled to the surface moisture conditions
than at deeper layers (Kustas et al., 2003). For example, light
precipitation events (e.g., less than 12 mm) that moistened the
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Table 5
RMSEs and biases of the daytime predictions of Rn and LE.

Rn LE

Bias RMSE Bias RMSE
(W/m2) (W/m2) (W/m2) (W/m2)

Crop Gc-TSEB 13.62 47.16 1.39 48.65
PT-TSEB 20.91 47.99 −6.66 42.14
Gs-PM 65.4 87.44 −66.3 85.07
Gc-TSEB 10.47 46.03 −5.84 52.35

Grass PT-TSEB 40.19 59.64 −8.62 54.73
Gs-PM 63.33 84.85 −71.57 85.87

soil surface sometimes hardly increased the soil moisture at a
depth of 0.05 m, especially when the soil moisture content was
low (e.g., DOY 184–195 in 2003 at the grass site); thus, both
models underestimated LE by approximately 60 W/m2 during that
period. In addition, positive biases (Gc-TSEB: 84.8 W/m2; PT-TSEB:
96.2 W/m2) were found during some of the dry soil periods, such
as DOY 209–216 in 2003 at the grass site, which indicates that the
soil above 0.05 m dried much faster than the soil at 0.05 m.

To address this problem, we tried Lee and Pielke’s general
formulation (1992) of the soil surface relative humidity to esti-
mate soil evaporation. Similar results of LE were produced, but no
improvements in the LE estimates were found. This indicated that
to improve estimates of soil evaporation, a new parameterization
other than the heat transfer equation may be needed under soil
moisture decoupling conditions.

To gain deeper insight into the dynamics of the Gc-TSEB and
PT-TSEB models (calibrated by LST), we evaluated the models’
diurnal performances at both sites during the period from DOY
195 to DOY 203 in 2003. In the middle of this period, precipita-
tion occurred for three continuous days (DOY 198–200; 15.1 mm,
13.4 mm, and 4.6 mm, respectively, at the crop site and 27.8 mm,
13.3 mm, and 3.2 mm, respectively, at the grass site) (Fig. 9). The
modeled LE matched the trends and magnitudes of the EC mea-
surements well at the crop site but missed the peak on DOY
199 and failed to match the diurnal cycle on DOY 200 because
of the daytime precipitation (Fig. 10). At the grass site, both
Gc-TSEB and PT-TSEB produced similar LE trends to the EC mea-
surements but underestimated LE by approximately 44.7 W/m2

(Gc-TSEB) and 49.3 W/m2 (PT-TSEB) because of the decoupling

Fig. 10. Diurnal LE predictions from Gc-TSEB and PT-TSEB from DOY 195 to 203.
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Fig. 11. Diurnal soil temperatures at different depths from DOY 195 to 203.

of the soil moisture content at the surface and at deeper lay-
ers.

The soil surface temperatures (Ts) from Gc-TSEB and PT-TSEB
models vary in a consistent diurnal pattern with the measured soil
temperatures at depths of 0.1 m, 0.05 m, and 0.02 m but with a
phase shift ahead (Fig. 11). The direct evaluation of Ts is difficult
because of the scale and depth differences between the modeled
and measured values. However, the ∼20 W/m2 bias of the Rn esti-
mation when using remotely sensed LST during the calibration
period indicates that the LST estimations from Gc-TSEB and PT-
TSEB at the crop site and those from Gc-TSEB at the grass site were
reasonable because the corresponding Rn biases were also approxi-
mately 20 W/m2 during the validation periods (Table 3). As a result,
the overestimation of Rn (∼40 W/m2) from PT-TSEB at the grass site
(Table 3) indicated that the LST had been underestimated in this
case. This underestimation may result from the smaller amount of
coupling between the canopy temperature and the canopy fluxes
in the PT-TSEB model than that in the Gc-TSEB model.

6. Conclusions

In this study, we incorporated a canopy conductance model into
TSEBSM to replace the original PT approximation and updated the
formulation of the under-canopy resistance. We then optimized
both models (the Gc version and the PT version) at pixel scales using
qualified remotely sensed LST. The LE and its partitioning between
the canopy and soil layers were found to be reasonable at both vali-
dation sites. In addition, LST was shown to be almost as effective as
flux measurements in calibrating the models. The resistance net-
works of the Gc-TSEB and PT-TSEB models are adjustable, so they
are not sensitive to the uncertainties of the LAI and the near surface
soil moisture. As a result, the advantages of remotely sensed LST,
such as their spatial continuity and their greater availability com-
pared to flux measurements, allow the wide use of Gc-TSEB and
PT-TSEB in energy flux estimations. Cloud contamination in LST
images is no longer an impediment to remote sensing ET models
because LST is only used in calibration instead of prediction.
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The day-to-day and diurnal variations of the predicted LE
matched the trends and peaks of the EC measurements well,
although systematic biases were found due to the decoupling effect
of soil moisture at different depths. In addition, systematic biases
of LST may result in systematically biased flux predictions by over-
calibrating the models. However, if the mean bias of LST is bounded
by ±1 K (STD of 2.5 K), the medians of the RMSEs in the LE predic-
tions from the LST-calibrated models were found to be similar to
those from the flux-calibrated models.

Overall, the time series of the calculated energy fluxes at the two
sites of Tongyu station showed that the canopy conductance was
successfully incorporated into the resistance network. More vali-
dations are needed at flux observation sites with various land cover
types around the world to test the usefulness of the models as a rou-
tine method. Furthermore, improvements of the parameterization
of the heat/vapor transfer resistances should also be included in the
TSEB framework in the future, especially those that are concerned
with soil evaporation.
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